1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
12

If the Moon rises at 7 A.M. on a particular day, then approximately what time will it rise four days later?

Physics
1 answer:
Gelneren [198K]3 years ago
3 0

Answer:

10:33 am

Explanation:

You might be interested in
A topographic map would best provide information about which area? O state boundaries O interstate highways O routes of minor ro
VladimirAG [237]

Answer:

I believe it is D

Explanation:

7 0
3 years ago
Read 2 more answers
2)It is known that the connecting rodS exerts on the crankBCa 2.5-kN force directed down andto the left along the centerline ofA
11111nata11111 [884]

Answer:

M_c = 100.8 Nm

Explanation:

Given:

F_a = 2.5 KN

Find:

Determine the moment of this force about C for the two cases shown.

Solution:

- Draw horizontal and vertical vectors at point A.

- Take moments about point C as follows:

                        M_c = F_a*( 42 / 150 ) *144

                        M_c = 2.5*( 42 / 150 ) *144

                        M_c = 100.8 Nm

- We see that the vertical component of force at point A passes through C.

Hence, its moment about C is zero.

5 0
3 years ago
A 120 resistor a 60 ohm resistor and a 40 ohm resistor are connected in parallel to a 120 volt power source. what is the current
larisa [96]

Answer:

6 A

Explanation:

First of all, we need to calculate the equivalent resistance of the circuit. The three resistors are connected in parallel, so their equivalent resistance is given by:

\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}=\frac{1}{120 \Omega}+\frac{1}{60 \Omega}+\frac{1}{40 \Omega}=\frac{3+2+1}{120 \Omega}=\frac{6}{120 \Omega}\\R_T = \frac{120}{6} \Omega

And now we can use Ohm's law to find the current in the circuit:

V=R_T II=\frac{V}{R_T}=\frac{120 V}{\frac{120}{6}\Omega}=6 A

6 0
3 years ago
Which of the following would increase​
bazaltina [42]

Answer:

1 and 3

Explanation:

<u>1 and 3  </u>

Increasing coils increases strength

   COOLING the wire would increase current flow and strength of magnet

Adding an iron core will definitely increase the strength of the electromagnet

7 0
2 years ago
Read 2 more answers
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
Other questions:
  • 1. Which of these statements is not a part of the Cell Theory?
    9·1 answer
  • What do low energy waves have
    12·1 answer
  • justin and his friends are on the football team. they consider skateboarders at their school to be an out-group. what does this
    11·2 answers
  • Batteries can supply a steady flow of electrons.<br> True<br> False
    12·1 answer
  • The International Space Station (ISS) orbits Earth at an altitude of 400 km. Using this information, plus the mass and radius of
    8·1 answer
  • What are three effect of force​
    7·1 answer
  • Is average speed a scalar or vector quantity? why?
    6·1 answer
  • Which is faster a bowling ball or a golf ball
    13·2 answers
  • Solve this question plz
    8·1 answer
  • Is quartzite a mineral, a rock, or neither?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!