1. The resistor is located at point D.
A resistor is an element of a circuit that opposes to the flow of current through it: the value of its resistance (R) tells how much the resistor opposes to the flow of current, and the resistance is related to the voltage in the circuit (V) and the current (I) by the Ohm's law:

Resistance is measured in Ohm (
), and a resistor is usually represented with a zig-zag line as the one at point D.
2. The switch is located at point B.
A switch is an element of the circuit that can be switched on and off, opening and closing the circuit, therefore allowing or not the flow of current through it. When the switch is open, no current flows; when it is closed, the current can flow through the circuit.
The symbol of a switch is represented at point B.
Gdfgffggfdgdfgfdgfggfggfgfgfgfgfffdfdffgg
-Brainly support team (Klara academic DEPT.)Spam words mean team is having trouble determining the question CONTACT For support.
Explanation:
speed of light= c
wave length= L
frequency= f
c=Lf → L= c/f → L= 3 × 10⁸/ 27 × 10⁹ → L = 1/90 ≈ 0.011 m
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>