Climate is a particular place's distance from the equator
It is difficult for astronomers to find object like planets and asteroids because it takes a lot of time to verify the objects locations and what surrounds a certain object in order to prove and be precise of its location
Answer:
Explanation:
Energy of signal being radiated per second on all sides = 71 x 10³ J .
At a distance of 220 m it is spread over an area of 4 π x (220)² because it is spreading uniformly on all sides.
So energy crossing per unit area
= 
= 11.67 x 10⁻² Wm⁻²s⁻¹.
This is the intensity of the signal.
At 2200 m this intensity will further reduce by 100 times
So there it becomes equal to
11.67 x 10⁻⁴ Wm⁻² s⁻¹.
Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
You draw a straight line from the start point to the end point. It doesn't matter what route was actually followed for the trip.