Explanation:
It is given that,
Mass of lithium, 
It is accelerated through a potential difference, V = 224 V
Uniform magnetic field, B = 0.724 T
Applying the conservation of energy as :


q is the charge on an electron

v = 78608.58 m/s

To find the radius of the ion's path in the magnetic field. The centripetal force is balanced by the magnetic force as :



r = 0.0078 meters
So, the radius of the path of the ion is 0.0078 meters. Hence, this is the required solution.
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Answer:
Torque,
Explanation:
Given that,
The loop is positioned at an angle of 30 degrees.
Current in the loop, I = 0.5 A
The magnitude of the magnetic field is 0.300 T, B = 0.3 T
We need to find the net torque about the vertical axis of the current loop due to the interaction of the current with the magnetic field. We know that the torque is given by :

Let us assume that, 
is the angle between normal and the magnetic field, 
Torque is given by :

So, the net torque about the vertical axis is
. Hence, this is the required solution.
Answer:
Zero
Explanation:
The work done by a force on an object is given by:

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and the displacement of the object
In this situation, the force is the force of gravity acting on the satellite. This force always points towards the centre of the trajectory, so it is always perpendicular to the direction of motion of the satellite (since the orbit is circular), so
and
. Therefore, the work done by gravity is also zero.