Answer:
22cm
Explanation:
focal length = 11cm
radius of curvature,r = 2f
r= 2 x 11
r=22cm
Answer:
He should stand from the center of laser pointed on the wall at 1.3 m.
Explanation:
Given that,
Wave length = 650 nm
Distance =10 m
Double slit separation d = 5 μm
We need to find the position of fringe
Using formula of distance



Put the value into the formula


Hence, He should stand from the center of laser pointed on the wall at 1.3 m.
Answer:

Explanation:
The capacitance of the parallel-plate capacitor is given by:

where
is the vacuum permittivity
is the area of the plates
is the separation between the plates
Substituting,

The energy stored in the capacitor is given by

Since we know the energy

we can re-arrange the formula to find the charge, Q:

Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>