Answer:
f.The period is independent of the suspended mass.
Explanation:
The period of a pendulum is given by

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that:
1) the period of the pendulum depends only on its length, L, and it is proportional to the square root of the length
2) the period does not depend neither on the mass of the pendulum, nor on its amplitude of oscillation
So, the only correct statements are
f.The period is independent of the suspended mass.
Note: statement "e.The period is proportional to the length of the wire" is also wrong, because the period is NOT proportional to the length of the wire, but it is proportional to the square root of it.
Answer: 75.02 m
Explanation:
u = 0 ( starts from rest )
v = 50 m/s
t = 3 s
( i ) a = v - u / t
= 50 - 0 /3
= 16.67
( ii ) s = ut + 1/2 at²
= 0 × 3 + 1/2 × 16.67 × 3 × 3
= <u>75.02 m</u>
Hope this helps...
Answer:
Time of flight A is greatest
Explanation:
Let u₁ , u₂, u₃ be their initial velocity and θ₁ , θ₂ and θ₃ be their angle of projection. They all achieve a common highest height of H.
So
H = u₁² sin²θ₁ /2g
H = u₂² sin²θ₂ /2g
H = u₃² sin²θ₃ /2g
On the basis of these equation we can write
u₁ sinθ₁ =u₂ sinθ₂=u₃ sinθ₃
For maximum range we can write
D = u₁² sin2θ₁ /g
1.5 D = u₂² sin2θ₂ / g
2 D =u₃² sin2θ₃ / g
1.5 D / D = u₂² sin2θ₂ /u₁² sin2θ₁
1.5 = u₂ cosθ₂ /u₁ cosθ₁ ( since , u₁ sinθ₁ =u₂ sinθ₂ )
u₂ cosθ₂ >u₁ cosθ₁
u₂ sinθ₂ < u₁ sinθ₁
2u₂ sinθ₂ / g < 2u₁ sinθ₁ /g
Time of flight B < Time of flight A
Similarly we can prove
Time of flight C < Time of flight B
Hence Time of flight A is greatest .
Answer:
l think C am not pretty show