Answer:
V = 381.70 m³
Explanation:
ρ air = 1.28 kg / m³
ρ helium = 0.18 kg / m³
R = 4.5 m
Vb = 0.068 m³
mb = 123 kg
To determine the volume of helium in the balloon when fully inflated
V = 4 / 3 π * R ³
V = 4 * π / 3 ( 4.5 m )³
V = 381.70 m³
To determine the mass total
m = ρ helium * V
m = 0.18 kg / m³ * 381.70 m³
m = 68.70 kg
mt = ( 68.70 + 123 )kg
mt = 191.70 kg
Answer:
He traveled 9km
Explanation:
To do this problem you need to use the equation which is Speed= distance/time and this problem gives you the speed which is 18 km/h and it gives you the time 1/2 hour so you write the equation 18= d/ 1/2 which his distance is 9km
Answer:
Explanation:
Given
speed of Electron 
final speed of Electron 
distance traveled 
using equation of motion

where v=Final velocity
u=initial velocity
a=acceleration
s=displacement


acceleration is given by 
where q=charge of electron
m=mass of electron
E=electric Field strength

The gravitational force between two object depends on their masses and on their distance.
Since the formula is

If the masses grow, the force also grows. But I'm assuming the two objects are fixed, so you can't enlarge their mass.
So, the only option remaining is to lower their distance: since it sits at the denominator, a smaller value of d results in a bigger value for F.
So, if you reduce the distance between two objects, the gravitational force between them will always result in an increase
Answer:Coulomb's law states that: The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.
Explanation:Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force