Answer:
Explanation:
E = σ/ε = (F/A) / (ΔL/L)
E = (mg/(πd²/4) / (ΔL/L)
E = (4mg/(πd²) / (ΔL/L)
E = 4Lmg/(πd²ΔL)
E = 4(30.0)(90)(9.8)/(π(0.01²)0.25)
E = 1.35 x 10⁹ Pa or 1.35 GPa
Explanation:
Given that,
Mass if the rock, m = 1 kg
It is suspended from the tip of a horizontal meter stick at the 0-cm mark so that the meter stick barely balances like a seesaw when its fulcrum is at the 12.5-cm mark.
We need to find the mass of the meter stick. The force acting by the stone is
F = 1 × 9.8 = 9.8 N
Let W be the weight of the meter stick. If the net torque is zero on the stick then the stick does not move and it remains in equilibrium condition. So, taking torque about the pivot.

W = 3.266 N
The mass of the meters stick is :

So, the mass of the meter stick is 0.333 kg.
Answer:
Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry.
Explanation:
This can be seen through the fact that Aksionov has the ability to seek his own justice many times throughout the story, yet does not take it
Answer:
ΔK = 24 joules.
Explanation:
Δ
Work done on the object
Work is equal to the dot product of force supplied and the displacement of the object.
* Δ
Δ
can be found by subtracting the vectors (7.0, -8.0) and (11.0, -5.0), which is written as Δ
= (11.0 - 7.0, -5.0 - -8.0) which equals (4.0, 3.0).
This gives us
*
=
=
J