To determine the object which could give the greatest impact we will apply the concept of momentum. The object that has the highest momentum will be the object that will impact the strongest. Our values are
Mass of Object A

Velocity of object A

Mass of object B

Velocity of object B

The general formula for momentum is the product between mass and velocity, then

For each object we have then,


Since the momentum of object A is greater than that of object B, then object A will make you feel force upon impact.
Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force = 
Electrostatic force = 
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get



v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.
Answer: Option (b) is the correct answer.
Explanation:
A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.
Symbol of a gamma particle is
. Hence, charge on a gamma particle is also 0.
For example, 
So, when a nucleus decays by gamma decay to a daughter nucleus then there will occur no change in the number of protons and neutrons of the parent atom but there will be loss of energy as a nuclear reaction has occurred.
Thus, we can conclude that the statement daughter nucleus has the same number of nucleons as the original nucleus., is correct about if a nucleus decays by gamma decay to a daughter nucleus.
The point of contact the path difference is zero but one of the interfering ray is reflected so the effective path difference becomes λ/2 thus the condition of minimum intensity is created in the center.