Answer:
7500 N/m²
Explanation:
From the question given above, the following data were obtained:
Force (F) = 300 N
Area (A) = 400 cm²
Pressure (P) =?
Next, we shall convert 400 cm² to m². This can be obtained as follow:
1×10⁴ cm² = 1 m²
Therefore,
400 cm² = 400 cm² × 1 m² / 1×10⁴ cm²
400 cm² = 0.04 m²
Finally, we shall determine the pressure. This can be obtained as follow:
Force (F) = 300 N
Area (A) = 0.04 m²
Pressure (P) =?
P = F/A
P = 300 / 0.04
P = 7500 N/m²
Answer:
The net force on the car is 2560 N.
Explanation:
According to work energy theorem, the amount of work done is equal to the change of kinetic energy by an object. If '
' be the work done on an object to change its kinetic energy from an initial value '
' to the final value '
', then mathematically,

where '
' is the mass of the object and '
' and '
' be the initial and final velocity of the object respectively. If '
' be the net force applied on the car, as per given problem, and '
' is the displacement occurs then we can write,

Given,
.
Equating equations (I) and (II),

Answer:
The speed of light measured in any frame is c = 3.00E8 m/s.
This is one of Einstein's postulates of special relativity.
Answer:
Explanation:
The time taken by a transverse wave to propagate from one end to another depends on the number of oscillation made by the wave itself. If the total number of oscillation of the wave is known, the time taken by the wave to propagate through can be determined.
Note that the term "period" is the time taken by a transverse wave to complete one oscillation. So if we know the number of oscillation made in one second by the wave and the total oscillation made, then we can know determine how long it will take a transverse wave to propagate from one end of the string to the other
Explanation:
Newton's second law simply says that the net force on an object is equal to the object's mass times its acceleration.
∑F = ma
For example, think of a game of tug-of-war, in which two teams pull on a rope in opposite directions.
If the forces are equal (balanced), then the net force is 0 N, so Newton's second law tells us that the rope's acceleration is 0 m/s².
If the forces are not equal (unbalanced), then the net force is not 0 N, and the rope will accelerate in the direction of the net force.