Answer:
Part a)

Part b)

Explanation:
Part A)
As we know that time period of the motion is given as

so we have



now at the point of maximum amplitude the force equation when Normal force is about to zero is given as

so we have



Part b)
Now if the amplitude of the SHM is 6.23 cm
and now at this amplitude if object will lose the contact then in that case again we have



so now we have


The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Explanation:
SUPONIENDO QUE LA ACELERACIÓN DE LA GRAVEDAD ES 
USANDO LA SEGUNDA LEY DE NEWTON:
<em>m</em> = 80.0 N/
= 8.16 kg
Answer:
The specific heat of a gas may be measured at constant pressure. - is accurate when discussing specific heat.
Explanation:
W boson has +1e or - 1e charge, Z boson has 0 charge.
Leptons have +1e, -1e or 0 charge.
Photons have 0 charge.
Only quarks have a charge of +2/3e or -1/3e of an electron charge.
To be exact, only up-type quarks (Up, Down and Top quarks) have a +2/3e or two thirds of an electron charge.
So the correct answer is D) Quark.