The answer is d. experiment
So, the force of gravity that the asteroid and the planet have on each other approximately 
<h3>Introduction</h3>
Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

With the following condition :
- F = gravitational force (N)
- G = gravity constant ≈
N.m²/kg²
= mass of the first object (kg)
= mass of the second object (kg)- r = distance between two objects (m)
<h3>Problem Solving</h3>
We know that :
- G = gravity constant ≈
N.m²/kg²
= mass of the planet X =
kg.
= mass of the planet Y =
kg.- r = distance between two objects =
m.
What was asked :
- F = gravitational force = ... N
Step by step :





<h3>Conclusion</h3>
So, the force of gravity that the asteroid and the planet have on each other approximately

<h3>See More</h3>
A guessing answer the best answer but you have had to subtract the answer by the equation that it was giving u
Answer: A combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
Explanation:
The term standard temperature and pressure is also known as STP and it is most commonly used when we want to calculate the density of a gas.
The term standard temperature means
Fahrenheit or
or 273 Kelvin. On the other hand, term standard pressure means 1 atmosheric pressure of a gas.
Thus, we can conclude that a combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.