Given :
You drive 200 miles in 3 hours before stopping for lunch and gas. After lunch you travel 250 miles in an hour and a half.
To Find :
Average speed.
Solution :
We know, average speed is given by :

Therefore, average speed of the journey is 100 miles/hr.
Hence, this is the required solution.
Answer: Option <em>a.</em>
Explanation:
Kepler's 2nd law of planetary motion states:
<em>A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.</em>
It tells us that it doesn't matter how far Earth is from the Sun, at equal times, the area swept out by Earth's orbit it's always the same independently from the position in the orbit.
Answer:
Before:


After:




Explanation:
<u>Conservation of Momentum</u>
Two objects of masses m1 and m2 moving at speeds v1o and v2o respectively have a total momentum of

After the collision, they have speeds of v1f and v2f and the total momentum is

Impulse J is defined as

Where F is the average impact force and t is the time it lasted
Also, the impulse is equal to the change of momentum

As the total momentum is conserved:


We can compute the speed of the second object by solving the above equation for v2f

The given data is


a) The impulse will be computed at the very end of the answer
b) Before the collision


c) After collision

Compute the car's speed:


And the car's momentum is

The Impulse J of the system is zero because the total momentum is conserved, i.e. \Delta p=0.
We can compute the impulse for each object

The force can be computed as

The force on the car has the same magnitude and opposite sign
Answer:
Answer. to final velocity 'v' =10.9 m/s in time 't' = 2.37 secs. So acceleration = -7.09 m/sec^2 or, decceleration is 7.09 m/sec^2
Explanation:
Answer:
θ₁ = 0.5 revolution
Explanation:
We will use the conservation of angular momentum as follows:

where,
I₁ = initial moment of inertia = 18 kg.m²
I₂ = Final moment of inertia = 3.6 kg.m²
ω₁ = initial angular velocity = ?
ω₂ = Final Angular velocity =
= 1.67 rev/s
Therefore,

where,
θ₁ = revolutions if she had not tucked at all = ?
t₁ = time = 1.5 s
Therefore,

<u>θ₁ = 0.5 revolution</u>