Average velocity over a given time interval is the distance traveled divided by the time:
D. Unbalanced forces are acting on it.
hope this helped
Answer:
The strength of the magnetic field is
.
Explanation:
Given that,
Length of the rod, L = 1.01 m
Speed with which the rod is moving, v = 3.47 m/s
We need to find the strength of the magnetic field that is perpendicular to both the rod and your direction of motion and that induces an EMF of 0.265 mV across the rod. When the rod is moving with some speed, an emf gets induced and it is given by :

B is magnetic field

So, the strength of the magnetic field is
.
To solve this problem it is necessary to apply the concepts related to Kinetic Energy, specifically, since it is a body with angular movement, the kinetic rotational energy. Recall that kinetic energy is defined as the work necessary to accelerate a body of a given mass from rest to the indicated speed.
Mathematically it can be expressed as,

Where
I = Moment of Inertia
Angular velocity
Our values are given as

A revolution is made every 4.4 seconds.


If the angular velocity is equivalent to the displacement over the time it takes to perform it then


Replacing at our previous equation we have,



Therefore the kinetic energy is equal to 