Considering the Charles' law, the gas would have a temperature of -109.2 C.
<h3>Charles' law</h3>
Finally, Charles' law establishes the relationship between the volume and temperature of a gas sample at constant pressure. This law says that the volume is directly proportional to the temperature of the gas. That is, if the temperature increases, the volume of the gas increases, while if the temperature of the gas decreases, the volume decreases.
Charles' law is expressed mathematically as:

If you want to study two different states, an initial state 1 and a final state 2, the following is true:

<h3>Temperature of the gas in this case</h3>
In this case, you know:
- P1= 1800 psi
- V1= 10 L
- T1= 20 C= 293 K (being 0 C= 273 K)
- P2= 1800 psi
- V2= 6 L
- T2= ?
You can see that the pressure remains constant, so you can apply Charles's law.
Replacing in the Charles's law:

Solving:


<u><em>T2=163.8 K= -109.2 C</em></u>
The gas would have a temperature of -109.2 C.
Learn more about Charles's law:
brainly.com/question/4147359?referrer=searchResults
I just had this question. The answer is A. a battery
I believe the statement above is true. <span>A </span>carbohydrate<span> is a </span>biological molecule<span> consisting of </span>carbon<span> (C), </span>hydrogen<span> (H) and </span>oxygen<span> (O) atoms, usually with a hydrogen–oxygen </span>atom ratio of 2:1. <span>When a </span>carbohydrate<span> is broken into its component sugar molecules by </span>hydrolysis<span> (e.g. sucrose being broken down into glucose and fructose), this is termed saccharification.</span>
Answer:
Explanation:
Since the transferred heat is equal to the change in the internal energy, the heat is proportional to the mass of the substance and the temperature change. The transferred heat also depends on the substance so that, for example, the heat necessary to raise the temperature is less for alcohol than for water. Hope that helps!:)
Nitrogen triiodide<span> is the </span>inorganic compound<span> with the formula </span>NI3<span>. It is an extremely sensitive </span>contact explosive<span>: small quantities explode with a loud, sharp snap when touched even lightly, releasing a purple cloud of iodine vapor; it can even be detonated by </span>alpha radiation. NI3<span> has a complex structural chemistry that is difficult to study because of the instability of the derivatives.</span>