
The element having valency of 1 is ~
From the calculations, the half life of the material is 6.5 days.
<h3>What is radioactivity?</h3>
The term radioactivity has to do with the spontaneous disintegration of a specie.
Uisng the formula;
N=Noe^-kt
N= amount at time t = 0.135 Ci or 4.995 ×10^9 Bq
No = amount initially present = 1.75 x 10^12 Bq
k = rate constant = ?
t = time taken = 55 days
Hence;
4.995 ×10^9 = 1.75 x 10^12e^-55k
4.995 ×10^9/1.75 x 10^12 = e^-55k
2.85 * 10^-3 = e^-55k
ln2.85 * 10^-3 = -55k
k = ln2.85 * 10^-3/-55
k = 0.1066 day-1
Half life = 0.693/ 0.1066 day-1
= 6.5 days
Learn more about radioactivity:brainly.com/question/1770619
#SPJ1
Explanation:
The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons
Answer:
1) 1.235 g.
2) 0.61 g.
Explanation:
- From the balanced equation:
<em>Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O.</em>
1.0 mol of Al(OH)₃ reacts with 3.0 moles of HCl to produce 1.0 mol of AlCl₃ and 3.0 moles of H₂O.
<em>1) How many grams of HCl can a tablet with 0.880 g of Al(OH)₃ consume? </em>
- To calculate the amount of HCl needed to consume 0.880 g of Al(OH)₃, we need to calculate the no. of moles of Al(OH)₃:
no. of moles of Al(OH)₃ = mass/molar mass = (0.880 g)/(78.0 g/mol) = 1.13 x 10⁻² mol.
∵ Every 1.0 mol of Al(OH)₃ needs 3.0 moles of HCl to be consumed.
∴ 1.13 x 10⁻² mol of Al(OH)₃ needs (3 x 1.13 x 10⁻² = 3.385 x 10⁻² mol) of HCl.
The no. of grams of HCl = no. of moles of HCl x molar mass of HCl = (3.385 x 10⁻² mol)(36.5 g/mol) = 1.235 g.
<em>2) How much H₂O?</em>
∵ Every 1.0 mol of Al(OH)₃ produces 3.0 moles of H₂O.
∴ 1.13 x 10⁻² mol of Al(OH)₃ produces (3 x 1.13 x 10⁻² = 3.385 x 10⁻² mol) of H₂O.
<em>The no. of grams of H₂O = no. of moles of H₂O x molar mass of H₂O </em>= (3.385 x 10⁻² mol)(18.0 g/mol) = <em>0.6092 g ≅ 0.61 g.</em>