<span>k = 1.7 x 10^5 kg/s^2
Player mass = 69 kg
Hooke's law states
F = kX
where
F = Force
k = spring constant
X = deflection
So let's solve for k, the substitute the known values and calculate. Don't forget the local gravitational acceleration.
F = kX
F/X = k
115 kg* 9.8 m/s^2 / 0.65 cm
= 115 kg* 9.8 m/s^2 / 0.0065 m
= 1127 kg*m/s^2 / 0.0065 m
= 173384.6154 kg/s^2
Rounding to 2 significant figures gives 1.7 x 10^5 kg/s^2
Since Hooke's law is a linear relationship, we could either use the calculated value of the spring constant along with the local gravitational acceleration, or we can simply take advantage of the ratio. The ratio will be both easier and more accurate. So
X/0.39 cm = 115 kg/0.65 cm
X = 44.85 kg/0.65
X = 69 kg
The player masses 69 kg.</span>
It is converted to energy according to E =mc^2
Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
D: An electromagnet with 20 coils.
That is because the more coils of the wire, the stronger the electromagnet is.
Answer:
60 000 N
Explanation:
1 pa = 1 N/m^2
you have 300 000 of these = 300 000 N /m^2
but only an area of .2 m^2
300 000 N / m^2 * .2 m^2 = 60 000 N