C, exothermic reaction. These types of reaction releases heat so that you can heat up your ready-to-eat meals.
Answer:1.55 times
Explanation:
Given
First wavelength
Second wavelength
According wien's diplacement law

where 
T=Temperature
Let
be the temperatures corresponding to
respectively.



Thus object with
is 1.55 times hotter than object with wavelength 
Refer to the figure shown below.
The velocity of the child and the velocity of the ship should be added vectorially to find the speed and direction of the child relative to the water surface.
The magnitude of the child's velocity is
v = √(2² + 18²) = 18.11 mph
The direction of the child's speed is
θ = tan⁻¹ (18/2) = tan⁻¹ 9 = 83.7° north of east or counterclockwise from the eastern direction.
Answer:
The magnitude is 18.1 mph.
The direction is 84° north of east.
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.