Answer:
Imp = 25 [kg*m/s]
v₂= 20 [m/s]
Explanation:
In order to solve these problems, we must use the principle of conservation of linear momentum or momentum.
1)

where:
m₁ = mass of the object = 5 [kg]
v₁ = initial velocity = 0 (initially at rest)
F = force = 5 [N]
t = time = 5 [s]
v₂ = velocity after the momentum [m/s]
![(5*0) +(5*5) = (m_{1}*v_{2}) = Imp\\Imp = 25 [kg*m/s]](https://tex.z-dn.net/?f=%285%2A0%29%20%2B%285%2A5%29%20%3D%20%28m_%7B1%7D%2Av_%7B2%7D%29%20%3D%20Imp%5C%5CImp%20%3D%2025%20%5Bkg%2Am%2Fs%5D)
2)
![(m_{1}*v_{1})+(F*t)=(m_{1}*v_{2})\\(0.075*0)+(30*0.05)=(0.075*v_{2})\\v_{2}=20 [m/s]](https://tex.z-dn.net/?f=%28m_%7B1%7D%2Av_%7B1%7D%29%2B%28F%2At%29%3D%28m_%7B1%7D%2Av_%7B2%7D%29%5C%5C%280.075%2A0%29%2B%2830%2A0.05%29%3D%280.075%2Av_%7B2%7D%29%5C%5Cv_%7B2%7D%3D20%20%5Bm%2Fs%5D)
Formula for terminal
velocity is:
Vt = √(2mg/ρACd)
<span>Vt = terminal velocity = ?
<span>m = mass of the falling object = 72 kg
<span>g = gravitational acceleration = 9.81 m/s^2
<span>Cd = drag coefficient = 0.80
<span>ρ = density of the fluid/gas = 1.2 kg/m^3</span>
<span>A = projected area of the object (feet first) = 0.21 m * 0.41
m = 0.0861 m^2
Therefore:</span></span></span></span></span>
Vt = √(2 * 72
* 9.81 / 1.2 * 0.0861 * 0.80)
<span>Vt = 130.73 m/s</span>
Answer:
0.9432 m/s
Explanation:
We are given;
Mass of swimmer;m_s = 64.38 kg
Mass of log; m_l = 237 kg
Velocity of swimmer; v_s = 3.472 m/s
Now, if we consider the first log and the swimmer as our system, then the force between the swimmer and the log and the log and the swimmer are internal forces. Thus, there are no external forces and therefore momentum must be conserved.
So;
Initial momentum = final momentum
m_l × v_l = m_s × v_s
Where v_l is speed of the log relative to water
Making v_l the subject, we have;
v_l = (m_s × v_s)/m_l
Plugging in the relevant values, we have;
v_l = (64.38 × 3.472)/237
v_l = 0.9432 m/s
8 meters per second. To find velocity is to divide distance by total time. so 400/50.
Answer:
<em><u>Energy is the term that best completes the statement.</u></em>
<em><u></u></em>
<em><u>Hope this helps!</u></em>