Explanation:
The acceleration of the scooter is 2.5 m/s
False because opposites attract. :)
Answer:
B. d(low)=4d(high)
Explanation:
Frequency of a string can be written as;
f = v/2L
Where;
v = sound velocity
L = string length
Frequency can be further expanded to;
f = v/2L = (1/2L)√(T/u) ......1
Where;
m= mass,
u = linear density of string,
T = tension
p = density of string material
A = cross sectional area of string
d = string diameter
u = m/L .......2
m = pAL = p(πd^2)L/4 (since Area = (πd^2)/4)
f = (1/2L)√(T/u) = (1/2L)√(T/(m/L))
f = (1/2L)√(T/((p(πd^2)L/4)/L))
f = (1/2L)√(4T/pπd^2)
f = (1/L)(1/d)√(4T/pπ)
Since the length of the strings are the same, the frequency is inversely proportional to the string diameter.
f ~ 1/d
So, if
4f(low) = f(high)
Then,
d(low) = 4d(high)
The velocity of the particle is given by the derivative of the position vector:

(a) The particle is moving in the <em>x</em>-direction when the <em>y</em>-component of velocity is zero:

But we want <em>t</em> > 0, so this never happens, unless 2<em>c</em> = <em>d</em> is given, in which case the <em>y</em>-component is always zero.
(b) Similarly, the particle moves in the <em>y</em>-direction when the <em>x</em>-component vanishes:

We drop the zero solution, and we're left with

In the case of 2<em>c</em> = d, this times reduces to <em>t</em> = <em>c</em>/(6<em>c</em>) = 1/6.
Answer:
The momentum of bath cars is 40000 Ns which make the difficulty to stop each car in aspect of fprce is the same.
Explanation:
Momentum (P) =mass(m) × velocity (v)
For car A,
P = m × v = 1000 × 40 = 40000 Ns
For car B,
P = m × v = 4000 × 10 = 40000 Ns
Force (F) = Momentum change(ΔΡ)/ time taken(t)
F = ΔΡ/t
When stopping the car the momentum changes from 40000 Ns to 0
So momentum change in both cars is the same. So to stop the two cars in a given time (t) you need the same force, which means you will feel same difficulty.