0.5
Explanation:
Given parameters:
Mass of Ca²⁺ = 10g
unknown:
Equivalent weight = ?
Solution:
Equivalent weight that is the amount of electrons which a substance gains or loses per mole.
Ca²⁺ has +3 charge
It lost 2e⁻;
therefore;
In 1 mole of Ca²⁺, we have 2 equivalent weight
1 mol Ca²⁺ = 2eq. wts.
1 mol Ca x (40 g / 1 mol ) x (1 mol / 2 eq.wts.) = 20.0 g = 1 eq.wt.
Therefore;
10.0 g Ca²⁺ x (1 eq.wt. / 20.0 g) = 0.5 eq.wts.
learn more:
Molar mass brainly.com/question/2861244
#learnwithBrainly
A. is decomposition so HCL = H2 + Cl2
not balanced cause hcl needs 2
2HCL = H2 + Cl2
balanced
b. Br2 + Al-i = AlBr3 + I2 single rep.
not balanced since br need 3 so watch carefully cause many changes needed
3Br2 + Al-i = AlBr3 + I2 not right is unbalanced so make it 2
3Br2 + Al-i = 2AlBr3 + I2 now left Al is unbal. so make 2 there
3Br2 + 2Ali = 2AlBr3 + I2
Balanced
C. Na + S = Na2S synthesis reaction is not bal. left Na needs 2
2Na + S = Na2S balanced.
Answer: Edge length of the unit cell = 628pm
Explanation: For a body centred cubic structured system, the relationship between the edge length of the unit cell and radius of the atoms in the structure is
Edge length of Unit cell (a) = (4R)/(√3)
R = 272pm = (272 × (10^-12))m = (2.72 × (10^-10))m
a = (4 × (2.72 × (10^-10)))/(√3)
a = (6.28157 × (10^-10))m = 628pm
Answer:
Suspension
Explanation:
This mixture is a simple suspension.
A suspension is a mixture of small insoluble particles of a solid in a liquid or gas. Here, it is insoluble particles in liquid.
- Suspensions are settle on standing this is why they have to be mixed again.
- The particles do not pass through ordinary filter paper.
- They are usually cloudy and have an opaque color.
- The marinade is simply a suspension.
- It is not a solution because they do not settle on standing.
- Also, colloids do not settle on standing.
We know that acids have a pH of under 7.
We also need to:
Set up an ICE table for the chemical reaction. Solve for the concentration of H3O+ using the equation for pH Use the concentration of H3O+ to solve for the concentrations of the other products and reactants.