The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Answer:
The velocity is 40 ft/sec.
Explanation:
Given that,
Force = 3200 lb
Angle = 30°
Speed = 64 ft/s
The resistive force with magnitude proportional to the square of the speed,

Where, k = 1 lb s²/ft²
We need to calculate the velocity
Using balance equation

Put the value into the formula

Put the value of k


At terminal velocity 
So, 


Hence, The velocity is 40 ft/sec.
Answer:
otherwise known as option D
Explanation:
:)
Answer:
Explanation:
I ASSUME you mean acceleration is 3 m/s²
v² = u² + 2as
s = (v² - u²) / 2a
s = (18² - 12²) / (2(3))
s = 30 m
to verify we can see that the acceleration time is
t = (18 - 12) / 3 = 2 s
s = 0 + 12(2) + ½(3)2² = 30 m
Answer:
a)10.28 Nm
b)9.93 Nm
Explanation:
Let g = 9.81m/s2. First we can calculate the weight of the trophy
W = mg = 1.6 * 9.81 = 15.696 N
(a) The torque is product of force and its moment arm
T = WL = 15.696 * 0.655 = 10.28 Nm
(b) Suppose his arm makes an angle of 15 degree with respect to the horizontal line. We can still calculate the arm length, or the horizontal distance from the trophy to the champion:

Again, torque is product of force and its moment arm
