The decimal approximation for the trigonometric function sin 28°48' is
Given the trigonometric function is sin 28°48'
The ratio between the adjacent side and the hypotenuse is called cos(θ), whereas the ratio between the opposite side and the hypotenuse is called sin(θ). The sin(θ) and cos(θ) values for a given triangle are constant regardless of the triangle's size.
To solve this, we are going to convert 28°48' into degrees first, using the conversion factor 1' = 1/60°
sin (28°48') = sin(28° ₊ (48 × 1/60)°)
= sin(28° ₊ (48 /60)°)
= sin(28° ₊ 4°/5)
= sin(28° ₊ 0.8°)
= sin(28.8°)
= 0.481753
Therefore sin (28°48') is 0.481753.
Learn more about Trigonometric functions here:
brainly.com/question/25618616
#SPJ9
If you assign variables to the problem, it can make things a lot simpler. Lets say chairs are x and tables are y. Therefore you have:
2x+6y=40
5x+3y=25
Now you can isolate the variable of one equation and put it into another (it doesn't matter which. I'm going to manipulate the top equation to plug into the bottom one).
2x=40-6y
x=20-3y
Now I plug into bottom equatioin:
5(20-3y) + 3y=25
100-15y+3y=25
100-12y=25
-12y=-75
y=$6.25
Now you can plug in y in either equation to get x.
2x+6(6.25)=40
37.5+2x=40
2x=2.5
x=1.25
So it costs $6.25 for each table and $1.25 for each chair. If you think about it, it would make sense for the table to cost more for the chair.
We can't see the graph so we don't know the question
Answer:
c
Step-by-step explanation: