Because weight W = M g, the ratio of weights equals the ratio of masses.
(M_m g)/ (M_w g) = [ (p^2 Man )/ (2 K_man)] / [ (p^2 Woman )/ (2 K_woman)
but p's are equal, so
K_m/K_m = (M_w g)/(M_m g) = W_woman / W_man = 450/680 = 0.662
Well, i would tell the kid that light is electromagnetic radiation which
is visible. The frequency and wavelength is just right so the radiation
becomes visible, and that visible radiation goes away from the star and
reaches earth
It also depends on the age of the child and the comprehension level
Answer:
40 m/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 60 m/s
Height (h) = 100 m
Acceleration due to gravity (g) = 10 m/s²
Final velocity (v) =?
The velocity at height 100 m can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
v² = 60² – (2 × 10 × 100)
v² = 3600 – 2000
v² = 1600
Take the square root of both side
v = √1600
v = 40 m/s
Thus, velocity at height 100 m is 40 m/s
For the same wave, the product product of
(wavelength) times (frequency)
is always the same number. (It happens to be the speed of the wave.)
So if one of them changes, the other one has to change in the opposite
direction, in order to keep their product constant.
For electromagnetic waves, higher frequency means higher energy.
I'm not sure about mechanical waves just now.
The outer core is made out of molten lava also known as liquid metal because of all the iron and other metals in it