1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
3 years ago
5

A rich industrialist was found murdered in his house. The police arrived at the scene at 11:00 PM. The temperature of the corpse

at that time was 31ºC and one hour later it was 30ºC. The temperature of the room in which the body was found was 22ºC. Estimate the time the murder occurred
Engineering
1 answer:
d1i1m1o1n [39]3 years ago
7 0

Answer:

The dude was killed around 6:30PM

Explanation:

Newton's law of cooling states:

    T = T_m + (T_0-T_m)e^{kt}

where,

T_0 = initial temp

T_m = temp of room

T = temp after t hours

k = how fast the temp is changing

t = time (hours)

T_0 = 31     because the body was initlally 31ºC when the police found it

T_m = 22   because that was the room temp

T = 30  because the body temp drop to 30ºC after 1 hour

t = 1 because that's the time it took for the body temp to drop to 30ºC

k=???   we don't know k so we must solve for this

rearrange the equation to solve for k

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{t}=k

plug in the numbers to solve for k

k = \frac{ln(\frac{T - T_m}{T_0-T_m})}{t}

k = \frac{ln(\frac{30 - 22}{31-22})}{1}

k=ln(\frac{8}{9})

Now that we know the value for k, we can find the moment the murder occur. A crucial information that the question left out is the temperature of a human body when they're still alive. A living human body is about 37ºC. We can use that as out initial temperature to solve this problem because we can assume that the freshly killed body will be around 37ºC.

T_0 = 37     because the body was 37ºC right after being killed

T_m = 22   because that was the room temp

T = 31  because the body temp when the police found it

k=ln(\frac{8}{9})   we solved this earlier

t = ???   we don't know how long it took from the time of the murder to when the police found the body

Rearrange the equation to solve for t

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}=t

plug in the values

t=\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}

t=\frac{ln(\frac{31 - 22}{37-22})}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t ≈ 4.337 hours from the time the body was killed to when the police found it.

The police found the body at 11:00PM so subtract 4.337 from that.

11 - 4.33 = 6.66 ≈ 6:30PM

You might be interested in
Write a C++ program to display yearly calendar. You need to use the array defined below in your program. // the first number is
ddd [48]

Answer:

//Annual calendar

#include <iostream>

#include <string>

#include <iomanip>

void month(int numDays, int day)

{

int i;

string weekDays[] = {"Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"};

// Header print

      cout << "\n----------------------\n";

      for(i=0; i<7; i++)

{

cout << left << setw(1) << weekDays[i];

cout << left << setw(1) << "|";

}

cout << left << setw(1) << "|";

      cout << "\n----------------------\n";

      int firstDay = day-1;

      //Space print

      for(int i=1; i< firstDay; i++)

          cout << left << setw(1) << "|" << setw(2) << " ";

      int cellCnt = 0;

      // Iteration of days

      for(int i=1; i<=numDays; i++)

      {

          //Output days

          cout << left << setw(1) << "|" << setw(2) << i;

          cellCnt += 1;

          // New line

          if ((i + firstDay-1) % 7 == 0)

          {

              cout << left << setw(1) << "|";

              cout << "\n----------------------\n";

              cellCnt = 0;

          }

      }

      // Empty cell print

      if (cellCnt != 0)

      {

          // For printing spaces

          for(int i=1; i<7-cellCnt+2; i++)

              cout << left << setw(1) << "|" << setw(2) << " ";

          cout << "\n----------------------\n";

      }

}

int main()

{

int i, day=1;

int yearly[12][2] = {{1,31},{2,28},{3,31},{4,30},{5,31},{6,30},{7,31},{8,31},{9,30},{10,31},{11,30},{12,31}};

string months[] = {"January",

"February",

"March",

"April",

"May",

"June",

"July",

"August",

"September",

"October",

"November",

"December"};

for(i=0; i<12; i++)

{

//Monthly printing

cout << "\n Month: " << months[i] << "\n";

month(yearly[i][1], day);

if(day==7)

{

day = 1;

}

else

{

day = day + 1;

}

cout << "\n";

}

return 0;

}

//end

3 0
3 years ago
A PLL is set up so that its VCO free-runs at 8.9 MHz. The VCO does not change frequency unless its input is within plus or minus
pickupchik [31]
It’s A 75khz because it’s plus or minus so if u add it would be too much
5 0
3 years ago
When you learned about the Highway Transportation system you learned about 6 different types of people as
Musya8 [376]

Answer: 3 different types of people using Highway Transportation system are :

1. Pedestrians - should be given priority while driving.

2. Cyclists - should be given enough space on road.

3. Motorcyclists- should be given enough space on road.

Explanation:

1. Pedestrians - Most of pedestrians use to walk on the footpath along side road that keeps them on a safe side. But there are places without footpath along side road, in that case they have to walk on the road itself. Here, we need to take care for them. We need to wait in case they are crossing road and also check for them while taking a turn.

2. Cyclists - They travel on road but are tough to figure out. They travel at a slower pace compared to cars. To avoid any accident with them, we are supposed to give them enough space which should be equivalent to a car's space.

3. Motorcyclists - They can pass by very closely and also come between lanes. Most of the things to be considered here are same as that of cyclists. Here also, we need to check for them carefully while taking a turn. Also, need to give them enough space.

4 0
3 years ago
A composite wall is to be used to insulate a freezer chamber at -350C. Two insulating materials are to be used with conductiviti
choli [55]

Answer:

thickness1=1.4m

thickness2=2.2m

convection coefficient=0.33W/m^2K

Explanation:

you must use this equation to calculate the thickness:

L=K(T2-T1)/Q

L=thickness

T=temperature

Q=heat

L1=0.04*(0--350)/10=1.4m

L2=0.1(220-0)/10=2.2m

Then use this equation to calculate the convective coefficient

H=Q/(T2-T1)

H=10/(250-220)=0.33W/m^2K

7 0
3 years ago
Because there is a one-to-many relationship between sales reps and customers in the TAL Distributors database, one sales rep can
stiv31 [10]

Answer:

True

Explanation:

The relationship between sales reps and customers is an example of a one-to-many relationship. This is because one sales rep can be associated with many customers but a customer must have one sales rep. It is impossible for a customer to have zero sales rep but this is quite possible for a sales rep to have either zero, one or even more customers. Therefore the statement is True.

7 0
3 years ago
Other questions:
  • how to calculate the torque when a force is applied on a cog? explain the step-by-step and provide an illustration/diagram. Can
    15·1 answer
  • A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.40 µF, and a source with ΔVmax = 240 V operatin
    9·2 answers
  • A four-lane freeway (two lanes in each direction) is located on rolling terrain and has 12-ft lanes, no lateral obstructions wit
    14·1 answer
  • How much heat (Btu) is prod uced by a 150-W light bulb that is on for 20-hours?
    14·1 answer
  • Reusable refrigerant containers under high-pressure must be hydrostatically tested how often?
    10·1 answer
  • What differentiates the master builder approach prior to the Renaissance from later approaches? Projects do not depend on indivi
    14·1 answer
  • Two routes connect an origin and a destination. Routes 1 and 2 have performance functions t1 = 2 + X1 and t2 = 1 + X2, where the
    6·1 answer
  • Contrast the electron and hole drift velocities through a 10 um (micro meter) layer of intrinsic silicon across which a voltage
    11·1 answer
  • The van der Waals equation is a modification of the ideal gas equation. What two factors does this equation account for? A. (1)
    6·1 answer
  • For a small company it's usually best to keep the corporate and brand image as___ as possible​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!