1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex777 [14]
3 years ago
6

A cone penetration test was carried out in normally consolidated sand, for which the results are summarized below: Depth (m) Con

e resistance, qc (MN/m2 ) 2.0 3.12 3.5 4.25 5.0 5.14 6.5 9.23 8.0 12.2 The average unit weight of the sand is 16.5 kN/m3 . Determine the friction angle at each depth using Eq. (3.52)
Engineering
1 answer:
Cerrena [4.2K]3 years ago
6 0

Answer:

hello your question is incomplete attached below is the missing equation related to the question  

answer : 40.389° , 38.987° , 38° , 39.869° , 40.265°

Explanation:

<u>Determine the friction angle at each depth</u>

attached below is the detailed solution

To calculate the vertical stress = depth * unit weight of sand

also inverse of Tan = Tan^-1

also qc is in Mpa while σ0 is in kPa

Friction angle at each depth

2 meters = 40.389°

3.5 meters  = 38.987°

5 meters = 38.022°

6.5 meters = 39.869°

8 meters = 40.265°

You might be interested in
Consider a very long, slender rod. One end of the rod is attached to a base surface maintained at Tb, while the surface of the r
9966 [12]

Answer:

(a) Calculate the rod base temperature (°C). = 299.86°C

(b) Determine the rod length (mm) for the case where the ratio of the heat transfer from a finite length fin to the heat transfer from a very long fin under the same conditions is 99 percent.  = 0.4325m

Explanation:

see attached file below

3 0
3 years ago
1. A 260 ft (79.25 m) length of size 4 AWG uncoated copper wire operating at a tem-
Murljashka [212]

A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.

Explanation:

From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).

To find the resistance of 260 ft (79.25 m) of size 4 AWG,

R= K * L/ A

K = 0.0214 ohm mm²/m

L = 79.25 m

A = 21.2 mm²

R = 0.0214 * \frac{79.25}{21.2}

  = 0.0214 * 3.738

  = 0.0792 ohm.

Thus the resistance of uncoated copper wire is 0.0792 ohm

5 0
3 years ago
What is the biggest expectation when engineers test out designs?
forsale [732]
The answer is B because it could be feasible but it’s not a need it and you got a time frame but it’s not a requirement and it doesn’t have to be unique.
6 0
4 years ago
Read 2 more answers
P10.12. A certain amplifier has an open-circuit voltage gain of unity, an input resistance of and an output resistance of The si
klio [65]

complete question

A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?

Answer:

3.03 V  0.184 W

2.499 mV  125*10^-9 W

Explanation:

First, apply voltage-divider principle to the input circuit: 1

V_{i}= (R_i/R_i+R_s) *V_s = 10^6/10^6+(0.1*10^6)\\*5

    = 4.545 V

The voltage produced by the voltage-controlled source is:

A_voc*V_i = 4.545 V

We can find voltage across the load, again by using voltage-divider principle:  

V_o = A_voc*V_i*(R_o/R_l+R_o)

      = 4.545*(100/100+50)

      = 3.03 V  

Now we can determine delivered power:  

P_L = V_o^2/R_L

      = 0.184 W

Apply voltage-divider principle to the circuit:  

V_o = (R_o/R_o+R_s)*V_s

       = 50/50+100*10^3*5

       = 2.499 mV

Now we can determine delivered power:  

P_l = V_o^2/R_l

     = 125*10^-9 W

Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.  

4 0
3 years ago
35 points an brainiest if correct
Jet001 [13]
I think the answer is B. 10D
6 0
3 years ago
Other questions:
  • Use the orange points (square symbol) to plot the initial short-run industry supply curve when there are 20 firms in the market.
    5·1 answer
  • At the end of a power distribution system, a certain feeder supplies three distribution transformer, each one supplying a group
    8·1 answer
  • A bolt is tightened, subjecting its shank to a tensile stress of 80 kpsi and a torsional shear stress of 50 kpsi at a critical p
    7·1 answer
  • "It is better to be a human being dissatisfied than a pig satisfied; better to be Socrates dissatisfied than a fool satisfied. A
    7·1 answer
  • Carbon dioxide at a temperature of 0oC and a pressure of 600 kPa (abs) flows through a horizontal 40-mm- diameter pipe with an a
    10·1 answer
  • Why is communication one of the most important aspects of an engineer’s job?
    7·2 answers
  • Set the leak rate to zero and choose a non-zero value for the proportional feedback gain.Restart the simulation and turn on the
    5·1 answer
  • At a certain location, wind is blowing steadily at 7 m/s. Determine the mechanical energy of air per unit mass and the power gen
    14·1 answer
  • A type of adjustable square that can be used to set, test, and transfer angles is called a
    5·1 answer
  • You are coming to this intersection, and are planning on turningright. There is a vehicle close behind you. You should?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!