Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer:
Answer for the question:
"Show that for a linearly separable dataset, the maximum likelihood solution for the logisitic regression model is obtained by finding a weight vector w whose decision boundary wx.
"
is explained in the attachment.
Explanation:
“Thinking about pleasant things to pass the time” would not promote safety in the shop because it would be taking the focus away from important tasks, which in turn decreases safety.
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm