1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dybincka [34]
3 years ago
6

Yoda: sees corona also yoda: wont last coronavirus will made in china it was!

Engineering
2 answers:
zmey [24]3 years ago
7 0

Answer:

yes!

Explanation:

Marat540 [252]3 years ago
7 0

Im not really into star wars but oh oh ok

You might be interested in
A driver is traveling at 90 km/h down a 3% grade on good, wet pavement. An accident
Paul [167]

Answer:

0.35

Explanation:

We resolve the component of the weight of the car along and perpendicular to the grade. We have mgsinФ and mgcosФ where Ф = angle of grade.

Now, the frictional force f = μN = μmgcosФ where μ = coefficient of friction

So, the net force along the grade is F = mgsinФ - μmgcosФ.

The work done by this force moving a distance, d along the grade is

W = (mgsinФ - μmgcosФ)d

This work equals the change in kinetic energy of the car. So ΔK = 1/2m(v₂² - v₁²) = W = (mgsinФ - μmgcosФ)d

1/2m(v₂² - v₁²) = (mgsinФ - μmgcosФ)d

1/2(v₂² - v₁²) = (gsinФ - μgcosФ)d

(v₂² - v₁²)/2d = (gsinФ - μgcosФ)

dividing through by gcosФ, we have

(v₂² - v₁²)/2dgcosФ = (gsinФ/gcosФ) - μgcosФ/gcosФ

(v₂² - v₁²)/2dgcosФ = tanФ -  μ

μ = tanФ - (v₂² - v₁²)/2dgcosФ

given that tanФ = 3% = 3/100 and 1 + tan²Ф = 1/cos²Ф, cosФ = 1/(√1 + tan²Ф) = 1/(√1 + (3/100)²) = 1/(√1 + (9/10000)) = 1/(√10000 + 9/10000) = 1/√(10009/10000) = 100/√10009 = 100/100.05 = 0.9995.

Also, given that v₁ = 90 km/h = 90 × 1000/3600 m/s = 25 m/s and v₂ = 45 km/h = 45 × 1000/3600 m/s = 12.5 m/s, d = 75 m and g = 9.8 m/s².

So, substituting the values of the variables into the equation, we have

μ = tanФ - (v₂² - v₁²)/2dgcosФ

μ = 3/100 - ((12.5 m/s)² - (25 m/s)²)/(2 × 75 m × 9.8 m/s² × 0.9995)

μ = 3/100 - ((156.25 m/s)² - (625 m/s)²)/1,469.265 m²/s²

μ = 3/100 - (-468.75 m²/s²)/1,469.265 m²/s²

μ = 3/100 + 468.75 m²/s²/1,469.265 m²/s²

μ = 0.03 + 0.32

μ = 0.35

So, theoretical friction  coefficient is 0.35

4 0
3 years ago
A gas turbine receives a mixture having the following molar analysis: 10% CO2, 19% H2O, 71% N2 at 720 K, 0.35 MPa and a volumetr
Sliva [168]

Answer:

2074.2 KW

Explanation:

<u>Determine power developed at steady state </u>

First step : Determine mass flow rate  ( m )

m / Mmax = ( AV )₁ P₁ / RT₁   -------------------- ( 1 )

<em> where : ( AV )₁ = 8.2 kg/s,  P₁ = 0.35 * 10^6 N/m^2,   R = 8.314 N.M / kmol , </em>

<em>  T₁  = 720 K . </em>

insert values into equation 1

m  = 0.1871  kmol/s  ( mix )

Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )

W( power developed at steady state )

W = m [ Yco2 ( h1 - h2 )co2

Attached below is the remaining  part of the detailed solution

4 0
3 years ago
A steady stream (1000 kg/hr) of air flows through a compressor, entering at (300 K, 0.1 MPa) and leaving at (425 K, 1 MPa). The
AleksandrR [38]

Answer:

The work furnished by the compressor is 69.77kJ/s

The minimum work required for the state to change is 55.26kW

Explanation:

The explanation to these solution is on the first, second , third and fourth uploaded image respectively

8 0
3 years ago
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
How much cornfield area would be required if you were to replace all the oil consumed in the United States with ethanol from cor
zaharov [31]

Answer:

2377.35 km

Explanation:

Given the following;

1. A cornfield is 1.5% efficient at converting radiant energy into stored chemical potential energy;

2. The conversion from corn to ethanol is 17% efficient;

3. A 1.2:1 ratio for farm equipment to energy production

4. A 50% growing season and,

5. 200 W/m2 solar insolation.

As per our assumptions,1.2/1 is the ratio for farm equipment to energy production,

So USA need around 45.45% (1/(1+1.2) replacement of fuel energy production which is nearly about = 0.4545*10^{20} J/year = \frac{0.4545*10^{20}}{365*24*3600}=1.44121*10^{12} J/sec

Growing season is only part of year ( Given = 50%),

Net efficiency = 1.5%*17%*50%=0.015*0.17*0.5=0.001275 = 0.1275%

Hence , Actual Energy replacement (Efficiency),

=\frac{1.44121*10^{12}}{0.001275} = 1.13*10^{15} J/sec=1.13*10^{15} W

As per assumption (5),

\because 200 W/m2 solar insolation arequired,

So USA required corn field area = 1.13*10^{15}/200 = 5.65*10^{12} m^{2}

Hence, length of each side of a square,

= (5.65*10^{12} )^{0.5} = 2377.35 km

4 0
3 years ago
Other questions:
  • A food-services company with a 480 V, three-phase service entrance has the following set of loads:  A 7 ton walk-in refrigerati
    13·1 answer
  • Which of the following does NOT describe product design.
    11·1 answer
  • Se requiere un permiso aprobación o restricción contaminante para todos los métodos comerciales de descarga de aguas residuales
    13·1 answer
  • Which of the following is not one of the systems required to ensure the safe and correct operation of an engine?
    5·1 answer
  • Why do engineers (and others) use the design process?
    13·1 answer
  • Select four types of engineers who might be involved in the development of a product such as an iPhone.
    6·2 answers
  • name the process by which mild steel can be converted into high carbon steel and explain it briefly ?​
    12·1 answer
  • You must yield the right-of-way to all of the following EXCEPT:
    8·1 answer
  • It tells the amount of materials to be purchased.
    14·1 answer
  • Contrast moral and immoral creativity and innovation<br>​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!