Answer:
A typical organic molecule that contains carbon hydrogen oxygen nitrogen and sulfur will be an amino acid.
Explanation:
Amino acid is the basic protein unit composed of the amino group, carboxylic group, and an alkyl group (which is specific for every amino acid). The R group or alkyl group is what gives the amino acid its identity. For example, the amino acid will be glycine if a Hydrogen atom is attached in place of the R group, and alanine if somehow the R group is replaced by a methyl group. Cystine is a typical example of an amino acid in which carbon, hydrogen oxygen, nitrogen, and sulfur are present. The structure of cystine is given below.
You can also get help from the following answer:
brainly.com/question/14583479
#SPJ4
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L
Answer:
N2O2(g) +O2(g) ===> 2NO2(g)
Explanation:
For a nonelementary reaction, the reaction equation is described as the sum of all the steps involved. All these steps constitute the reaction mechanism. Each step in the mechanism is an elementary reaction. The rate law of the overall reaction involves the rate determining step (slowest step) in the reaction sequence.
Now look at the overall reaction 2NO(g) + O2(g) ---------> 2NO2(g)
The two steps in the mechanism are
2NO(g) --------->N2O2(g) (fast)
N2O2(g) +O2(g) -------> 2NO2(g) (slow)
Summing all the steps and cancelling out the intermediate N2O2(g), we obtain the reaction equation;
2NO(g) + O2(g) ---------> 2NO2(g)
Hence the answer.
The answer is A
According to research I have done, pure solids and liquids are not included in the equilibrium constant expression. If the concentration of a reactant in aqueous solution is increased, the position of equilibrium will move in the direction which minimises the effect of this increase in concentration, by using the added component up, to decrese it's concentration again.