Answer:
Moment of inertia is the inertia of a rotating body with respect to its rotation. So basically it's the object's resistance to a rotational acceleration. This relates to Newton's first law! What does that exactly mean? Let's check out the explanation.
One formula that it is written in is I= mr
Explanation:
As Bill Nye says, "Inertia is a property of matter. Objects that are not moving don't move unless they get pushed or pulled. Moving objects keep moving unless they get pushed or pulled. This feature of objects and materials is what we call inertia."
I would check out Dan Fullerton's concept
and Organic Chemistry
Answer:
40.68 trillion kilometers.
Explanation:
Multiply 4.3 × 9.46, the product which you get is your answer in trillion km
Answer:
If it falls from 32 feet, how could the distance be 29 feet? Twelve bounces later, 58 is "obviously" incorrect as well. Eliminate those two before you do anything else.
The total distance up until that the nth bounce is
Sn = (32 - 32(.8)12) / (1 - .8) = 149.004883722... = 149
Explanation:
Answer:
C.
m
Explanation:
We are given that
Weight of board=w=10 N
Length of board=L=5 m
Tension in the string=T=3 N
Applied upward force=F=7 N
We have to find the distance at which its left wedge would they need to place this force in order for the board to be in static equilibrium.
Let r be the distance at which its left wedge would they need to place this force in order for the board to be in static equilibrium.
The board is uniform therefore, the center of board is the mid- point of board.
Therefore, the lever arm of weight=
Now, the torque exerted by the weight of the board

The torque exerted by applied force=
In static equilibrium
The sum of rotational forces=0

The two rotational force act in opposite direction therefore,

Substitute the values


m
Hence, option C is true.