This is 7e-5 meters. Hope this helps! Please mark brainliest. :)
Answer:
201.6 N
Explanation:
m = mass of disk shaped merry-go-round = 125 kg
r = radius of the disk = 1.50 m
w₀ = Initial angular speed = 0 rad/s
w = final angular speed = 0.700 rev/s = (0.700) (2π) rad/s = 4.296 rad/s
t = time interval = 2 s
α = Angular acceleration
Using the equation
w = w₀ + α t
4.296 = 0 + 2α
α = 2.15 rad/s²
I = moment of inertia of merry-go-round
Moment of inertia of merry-go-round is given as
I = (0.5) m r² = (0.5) (125) (1.50)² = 140.625 kgm²
F = constant force applied
Torque equation for the merry-go-round is given as
r F = I α
(1.50) F = (140.625) (2.15)
F = 201.6 N
Answer:
There are two components for a two-dimensional coordinate system/vector.
Explanation:
For two-dimensional vectors, such as velocity, acceleraton, etc, there are two components, the x- and y-components.
These components could be rotated or translated, depending on the coordinate system.
Instead of rectangular cartesian system, the components could also be in the form of polar coordinates, such as radius and theta (angle).
For three-dimensional vectors, such as velocity in space, there are three components, in various coordinate systems.
Answer:
a. P = nRTV
Explanation:
The question is incomplete. Here is the complete question.
"All of the following equations are statements of the ideal gas law except a. P = nRTV b. PV/T = nR c. P/n = RT/v d. R = PV/nT"
Ideal gas equation is an equation that describes the nature of an ideal gas. The molecule of an ideal gas moves at a particular velocity depending on the temperature. This gases collides with one another elastically. The collision that an ideal gas experience is a perfectly elastic collision.
The ideal gas equation is expressed as shown:
PV = nRT where:
P is the pressure of the gas
V is the volume
n is the number of moles
R is the ideal gas constant
T is the temperature.
Based on the formula given for an ideal gas, it can be inferred that the equation. P = nRTV is not a statement of an ideal gas equation.
The remaining option will results to an ideal gas equation if they are cross multipled.