Missing part in the text of the problem:
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>
First we can calculate the amount of energy needed to raise the temperature of the water, which is given by

where
m=1.8 g is the mass of the water

is the specific heat capacity of the water

is the increase in temperature.
Substituting the data, we find

We know that each photon carries an energy of

where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:

So, the energy of a single photon of this frequency is

and the number of photons needed is the total energy needed divided by the energy of a single photon:
Answer:
1.4719 m per sec
Explanation:
Hello
Kinetic energy is the energy associated with the movement of objects. Although there are many forms of kinetic energy
the formula to use is

where m is the mass of the object and v the velocity
lets see the kinetic energy of the sprinter running

Now, the elephant must have the same kinetic energy

it works only the positive root, so the elephant must to walk to 1.4719 m/s to have the same kinetic energy.
Have a great day
Answer:
melting of rock deep underground.
Explanation:
The melting of rocks deep underground does not produce sedimentary rocks. Most igneous rocks are produced by this process.
When molten rocks underground called magma is solidified in the subsurface, it results into the formation of igneous bodies.
- Sedimentary rocks forms by the accumulation of sediments.
- Inside the basin where the sediments are deposited, they are compacted, cemented and lithified.
- Chemical and physical weathering of rocks produces sediments.
Answer:
The Three Mountain Task was developed by Jean Piaget and Bärbel Inhelder in the 1940s to study children's ability to coordinate spatial perspectives. In the task, a child faced a display of three model mountains while a researcher placed a doll at different viewpoints of the display.
Explanation:
The time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Speed is simply defined as the distance travelled per unit time. Mathematically, it is expressed as:
<h3>Speed = distance / time </h3>
With the above formula, we can obtain the time taken for the light to travel from the camera to someone standing 7 m away. This can be obtained as follow:
Distance = 7 m
Speed of light = 3×10⁸ m/s
<h3>Time =?</h3>
Time = Distance / speed
Time = 7 / 3×10⁸
<h3>Time = 2.33×10¯⁸ s</h3>
Therefore, the time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Learn more: brainly.com/question/14988345