1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fgiga [73]
3 years ago
6

Help, It has multiple answers for this question.

Physics
1 answer:
evablogger [386]3 years ago
4 0
The answer is ultra violet radiation. From the air
You might be interested in
A resonant circuit using a 286-nFnF capacitor is to resonate at 18.0 kHzkHz. The air-core inductor is to be a solenoid with clos
lukranit [14]

Answer:

The inductor contains N = 523962.32 loops  

Explanation:

From the question we are told that

     The capacitance of the capacitor is  C =  286nF = 286 * 10^{-9} \  F

      The resonance frequency is  f = 18.0 kHz =  18*10^{3} Hz

       The diameter is  d =  1.1 mm = \frac{1.1 }{1000} = 0.00011 \ m

       The  of the air-core inductor is l = 12 \ m

        The permeability of free space is  \mu_o = 4 \pi *10^{-7} \ T \cdot m/A

 

Generally the inductance of this air-core inductor is mathematically represented as

              L =  \frac{\mu_o * N^2 \pi d^2}{4 l}

This inductance can also be mathematically represented as

               L = \frac{1}{w^2}

Where w is the angular speed mathematically given as

             w = 2 \pi f

So

            L =  \frac{1}{4 \pi ^2 f^2}

Now equating the both formulas for inductance

         \frac{\mu_o * N^2 \pi d^2}{4 l}  =  \frac{1}{4 \pi ^2 f^2}

making N the subject of  the formula

              N = \sqrt{\frac{1}{(2 \pi f)^2} * \frac{4 * l }{\mu_o * \pi d^2 C}  }

              N =  \frac{1}{2 \pi f} * \frac{2}{d} * \sqrt{\frac{l}{\pi * \mu_o * C} }

             

 Substituting value

            N =  \frac{1}{ 3.142  * 18*10^{3} * 0.00011 }  \sqrt{\frac{12}{ 3.142  * 4 \pi *10^{-7}* 286 *10^{-9}} }

              N = 523962.32 loops  

4 0
3 years ago
How does a savanna differ from a grassland?
Pepsi [2]

Answer:

B. Savannas have shrubs and isolated trees, while grasslands contain grasses.

8 0
3 years ago
Read 2 more answers
A 27-g steel-jacketed bullet is fired with a velocity of 640 m/s toward a steel plate and ricochets along path CD with a velocit
Dmitry [639]

Answer:

F = - 3.56*10⁵ N

Explanation:

To attempt this question, we use the formula for the relationship between momentum and the amount of movement.

I = F t = Δp

Next, we try to find the time that the average speed in the contact is constant (v = 600m / s), so we say

v = d / t

t = d / v

Given that

m = 26 g = 26 10⁻³ kg

d = 50 mm = 50 10⁻³ m

t = d/v

t = 50 10⁻³ / 600

t = 8.33 10⁻⁵ s

F t = m v - m v₀

This is so, because the bullet bounces the speed sign after the crash is negative

F = m (v-vo) / t

F = 26*10⁻³ (-500 - 640) / 8.33*10⁻⁵

F = - 3.56*10⁵ N

The negative sign is as a result of the force exerted against the bullet

6 0
2 years ago
HELP DUE TODAY
olga2289 [7]
The answer is B I think sorry if it’s wrong
3 0
3 years ago
Unpolarized light passes through two polarizers whose transmission axes are at an angle # with respect to each other. What shoul
Yuki888 [10]

Answer:

63.4^{\circ}

Explanation:

When unpolarized light passes through the first polarizer, the intensity of the light is reduced by a factor 1/2, so

I_1 = \frac{1}{2}I_0 (1)

where I_0 is the intensity of the initial unpolarized light, while I_1 is the intensity of the polarized light coming out from the first filter. Light that comes out from the first polarizer is also polarized, in the same direction as the axis of the first polarizer.

When the (now polarized) light hits the second polarizer, whose axis of polarization is rotated by an angle \theta with respect to the first one, the intensity of the light coming out is

I_2 = I_1 cos^2 \theta (2)

If we combine (1) and (2) together,

I_2 = \frac{1}{2}I_0 cos^2 \theta (3)

We want the final intensity to be 1/10 the initial intensity, so

I_2 = \frac{1}{10}I_0

So we can rewrite (3) as

\frac{1}{10}I_0 =  \frac{1}{2}I_0 cos^2 \theta

From which we find

cos^2 \theta = \frac{1}{5}

cos \theta = \frac{1}{\sqrt{5}}

\theta=cos^{-1}(\frac{1}{\sqrt{5}})=63.4^{\circ}

6 0
3 years ago
Other questions:
  • Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and
    13·1 answer
  • HELP PLEASE !!
    10·1 answer
  • At a certain harbor, the tides cause the ocean surface to rise and fall a distance d (from highest level to lowest level) in sim
    6·1 answer
  • 16 to 19 year old male and females are how much more likely to be involved in a crash?
    15·1 answer
  • A 33 kg gun is standing on a frictionless surface. The gun fires a 57.7g bullet with a muzzle velocity of 325m/s. The positive d
    8·1 answer
  • A(n) ____________ image cannot be projected and forms where light rays appear to originate.
    5·2 answers
  • What’s the difference between 40hz and 300hz
    12·1 answer
  • Whose data did Kepler use to construct the laws of planetary motion?
    10·1 answer
  • A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 2.9 m and moment of inertia 900 kg⋅m
    12·1 answer
  • Một cần trục có trọng lượng Q = 50 kN cẩu vật nặng có trọng lượng P = 10 kN
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!