Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.
Gregor Mendel was the first person to trace the characteristics of successive generations of a living thing.
Answer: Dependent Unit or System of Units
Explanation:
Density is calculated by dividing mass (Kg) by volume (L).
The unit of Density is Kg/L or one of their derivatives such as g/cm³.
Answer:
Vi = 8.28 m/s
Explanation:
This problem is related to the projectile motion.
As we know there are two components of motion associated with this, the horizontal component and vertical component.
The horizontal distance covered by the ball is
Vx*t = x
Vx*t = 5.3
Vx = 5.3/t eq. 1
Also we know that
Vx = Vicos(60)
Vx = Vi*0.5 eq. 2
equate eq. 1 and eq. 2
5.3/t = Vi*0.5
5.3/0.5 = Vi*t
Vi*t = 10.6 eq. 3
The vertical distance is
Vy = y1 + Vyi*t - 0.5gt²
also we know that
Vyi = Visin(60)
Vyi = Vi*0.866
It is given that V1 = 1.9 m and and Vy = 3 m is the vertical distance
3 = 1.9 + Vi*0.866*t - 0.5gt²
3 = 1.9 + Vi*0.866*t - 0.5(9.8)t²
3 = 1.9 + 0.866(Vi*t) - 0.5(9.8)t²
3 = 1.9 + 0.866(Vi*t) - 0.5(9.8)t²
1.1 = 0.866(Vi*t) - 4.9t²
0.866(Vi*t) = 4.9t² + 1.1
substitute Vi*t = 10.6 in above equation
0.866(10.6) = 4.9t² + 1.1
9.18 = 4.9t² + 1.1
4.9t² = 8.08
t² = 8.08/4.9
t² = 1.648
t = 1.28 sec
Finally, initial speed can be found by substituting the value of t into eq. 3
Vi*t = 10.6
Vi = 10.6/t
Vi = 10.6/1.28
Vi = 8.28 m/s