Answer:
molar composition for liquid
xb= 0.24
xt=0.76
molar composition for vapor
yb=0.51
yt=0.49
Explanation:
For an ideal solution we can use the Raoult law.
Raoult law: in an ideal liquid solution, the vapor pressure for every component in the solution (partial pressure) is equal to the vapor pressure of every pure component multiple by its molar fraction.
For toluene and benzene would be:

Where:
is partial pressure for benzene in the liquid
is benzene molar fraction in the liquid
vapor pressure for pure benzene.
The total pressure in the solution is:
And
Working on the equation for total pressure we have:
Since
We know P and both vapor pressures so we can clear
from the equation.
So
To get the mole fraction for the vapor we know that in the equilibrium:
So
Something that we can see in these compositions is that the liquid is richer in the less volatile compound (toluene) and the vapor in the more volatile compound (benzene). If we take away this vapor from the solution, the solution is going to reach a new state of equilibrium, where more vapor will be produced. This vapor will have a higher molar fraction of the more volatile compound. If we do this a lot of times, we can get a vapor that is almost pure in the more volatile compound. This is principle used in the fractional distillation.
It is energy associated with gravity or gravitational force. (Potential<span> </span>energy<span> held by an object because of its high position compared to a lower position).</span>
Answer the correct answer out of the four is option c spectroscopy
Explanation- The interaction between electromagnetic radiation and matter studied. This study is commonly known as spectroscopy. It can also be named as study of absorption spectra or emission spectra.
The former spectrum is formed when energy is absorbed from Photons or light energy by electrons while the latter spectrum is formed due to a wavelength of light that is released when electrons jump from higher to lower level.
Percent yield of the equation at above condidtions will be 42.4%
Answer:
2Ca + O₂ → 2CaO
Explanation:
Cuando el Calcio (Ca) reacciona con oxígeno (O₂) se produce cal (CaO). La cal es un sólido inodoro de color blanco a grisáceo. La cal es un óxido que se encuentra presente en el cemento y su cuantificación permite determinar la calidad y el tipo de cemento a utilizar.
La reacción que describe el proceso anterior es:
Ca + O₂ → CaO
Para balancear los oxígenos, se deben poner 2 CaO como producto:
Ca + O₂ → 2CaO
Para balancear los calcios, se pone como coeficiente del Ca un 2:
<h3>2Ca + O₂ → 2CaO</h3><h3 />
Esta última es la reacción que describe el proceso anterior