Answer:
2.122×10^25atoms
Explanation:
number of moles=mass/molar mass
7.05moles= mass of pyridine/79
reacting mass of pyridine=556.95
C5H5N= (12×5)+(5)+(14)=79
C5=60
to find the mass of carbon in 556.95g of pyridine we take the stoichometric ratio
60[C5] -----> 79[C5H5N]
x[C5] --------> 556.95g[C5H5N]
cross multiply
x=(60×556.95)/79
x=423g of carbon
moles=mass/molar mass
moles of carbon=423/12
moles=35.25moles of carbon
moles=number of particles/Avogadro's constant
35.25=number of particles/6.02×10^23
number of particles=2.122×10^25atoms of carbon
Answer:
Q = 30284.88 j
Explanation:
Given data:
Mass of ethanol = 257 g
Cp = 2.4 j/g.°C
Chnage in temperature = ΔT = 49.1°C
Heat required = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values in formula.
Q = 257 g× 2.4 j/g.°C × 49.1 °C
Q = 30284.88 j
Answer:
0.0295M
Explanation:
As you can see, in the mixture you have KSCN and other compounds. The KSCN in solution is dissolved in K⁺ ions and SCN⁻ ions. That means initial concentration of SCN⁻ ions is the same of KSCN, 0.0800M.
You are adding 35.0mL of this solution and the total volume of the mixture is 20.0mL + 35.0mL + 40.0mL = 95.0mL.
That means you are diluting your solution 95.0mL / 35.0mL = 2.714 times.
And the concentration of SCN⁻ is:
0.0800M / 2.714 =
<h3>0.0295M </h3>