The volume of O₂ produced: 84.6 L
<h3>Further explanation</h3>
Given
7.93 mol of dinitrogen pentoxide
T = 48 + 273 = 321 K
P = 125 kPa = 1,23365 atm
Required
Volume of O₂
Solution
Decomposition reaction of dinitrogen pentoxide
2N₂O₅(g)→4NO₂(g)+O₂ (g)
From the equation, mol ratio N₂O₅ : O₂ = 2 : 1, so mol O₂ :
= 0.5 x mol N₂O₅
= 0.5 x 7.93
= 3.965 moles
The volume of O₂ :

Answer:
There are four stages in the metamorphosis of butterflies and moths: egg, larva, pupa, and adult.
Hope this helps :)
Answer:
Point out to students that molecules of hot water are moving faster and are slightly further apart. The molecules of cold water are moving slower and are a little closer together. If students do not notice a difference, move the slider all the way to the left again and then quickly to the right.
2. How do molecules move in cold water?
Compare the speed of molecules in hot water compared to molecules in cold water? Water molecules move faster in hot water and slower in cold water. water molecules in cold, room temperature, and hot water. most of the liquid.
<span>You have to use a Newman projection to make sure that the H on C#2 is anti-coplanar with the Br on C#1. (Those are the two things that are going to be eliminated to make the alkene.)
My Newman projection looks like this when it's in the right configuration:
Front carbon (C#2) has ethyl group straight up, H down/left, and CH3 down/right
Back carbon (C#1) has H straight down, Ph up/left, and Br up/right.
Then when you eliminate the H from C#2 and the Br from C#1, you will have Ph and the ethyl group on the same side of the molecule, and you'll have the remaining H and CH3 on the same side of the molecule.
This is going to give you (Z)-2-methyl-1-phenyl-1-butene.</span>