Answer:
See Explanation
Explanation:
A decreasing temperature indicates that the dissolution process for the ammonium chloride requires input of energy from surroundings. That is, the process is essentially 2 parts => system (object of interest - NH₄Cl) and the surroundings (everything else - solvent - H₂O). The surroundings (water) solvent is showing a <u>measured</u> decrease in temperature or loss of energy (exothermic to surroundings) which flows into the system (NH₄Cl) and effects dissolution of salt into solution (endothermic to system).
Answer:
See explanation
Explanation:
Full molecular equation;
2NH3(aq) + AgNO3(aq) -------> [Ag(NH3)2]NO3(aq)
Full ionic equation
2NH3(aq) + Ag^+(aq) + NO3^-(aq) --------> [Ag(NH3)2]^+(aq) + NO3^-(aq)
Net ionic equation;
2NH3(aq) + Ag^+(aq) --------> [Ag(NH3)2]^+(aq)
When Silver nitrate is mixed with a solution of aqueous ammonia, a white and cloudy solution was observed.
Answer: Option (B) is the correct answer.
Explanation:
When a fatty acid contains high number of double bonds then its unsaturation will also be high and hence, it will consume greater number of equivalents of hydrogen.
In corn oil, there are no unsaturated sites are present.
In olive oil, there is one unsaturated site with majority of oleic acid. In olive oil, there are more than 70% of total unsaturated oils.
In lard oil, there are around 60% of unsaturated oils.
In herring oil, there are highest number of saturated fatty acids and lowest polyunsaturated acids.
Thus, we can conclude that out of the given options, olive oils would consume the greatest number of equivalents of hydrogen when subject to catalytic hydrogenation.
Newton's first law is the answer.