In BPC
tan\theta =a/b = 3/4
\theta = tan^-1(0.75)
\theta = 36.87 deg
BP = sqrt(a^2 + b^2) = sqrt((3)^2 + (4)^2) = 5 m
Eb = k Q/BP^2 = (9 x 10^9) (16 x 10^-9)/5^2 = 5.76 N/C
Ea = k Q/AP^2 = (9 x 10^9) (16 x 10^-9)/4^2 = 9 N/C
Ec = k Q/CP^2 = (9 x 10^9) (16 x 10^-9)/3^2 = 16 N/C
Net electric field along X-direction is given as
Ex = Ea + Eb Cos36.87 = (9) + (5.76) Cos36.87 = 13.6 N/C
Net electric field along X-direction is given as
Ey = Ec + Eb Sin36.87 = (16) + (5.76) Sin36.87 = 19.5 N/C
Net electric field is given as
E = sqrt(Ex^2 + Ey^2) = sqrt((13.6)^2 + (19.5)^2) = 23.8 N/C
(1.5 m^3) • (1.05 kg/m^3) = 1.575 kg. That's quite a bag you've got there ! 1 m^3 is like 264 gallons of blood. Hope the poor patient survives the transfusion.
Also, the actual density of blood is around 1.05 g/cm^3, or 1050 kg/m^3.
The blood they're giving the guy in this question is about 18% less dense than the AIR in his hospital room, and they're pumping 264 gallons of it into him. Maybe THAT'S his whole problem.
The isotopes of hydrogen used in nuclear reactions? If you mean hydrogen bombs, then the answer is deuterium and tritium, or hydrogen-2 and hydrogen-3.