Answer:
The heat of vaporization 580 cal/g times 602g = cal in human and do the same for life form.
Explanation:
Answer:
v=0.94 m/s
Explanation:
Given that
M= 5.67 kg
k= 150 N/m
m=1 kg
μ = 0.45
The maximum acceleration of upper block can be μ g.
a= μ g ( g = 10 m/s²)
The maximum acceleration of system will ω²X.
ω = natural frequency
X=maximum displacement
For top stop slipping
μ g =ω²X
We know for spring mass system natural frequency given as

By putting the values

ω = 4.47 rad/s
μ g =ω²X
By putting the values
0.45 x 10 = 4.47² X
X = 0.2 m
From energy conservation


150 x 0.2²=6.67 v²
v=0.94 m/s
This is the maximum speed of system.
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s
Answer:
Shawn's speed relative to Susan's speed = 10 mph
Resultant velocity = 82.32 mph
Explanation:
The given data :-
i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.
ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.
iii) The speed of both Susan and Shawn is relative to earth.
iv) The angle between Susan in north and Shawn in east is 90°.
We have to find Shawn's speed relative to Susan's speed.
v₂₁ = v₂ - v₁ = 63 - 53 = 10 mph
Resultant velocity,

v = 82.32 mph
Explanation:
It is given that,
Magnetic field, B = 0.15 T
Charge on a proton, 
Mass of a proton, 
The cyclotron frequency is given by :


f = 2286785.40 Hz
or


Hence, this is the required solution.