1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
7

how do you solve this problem. A bat flying at 3.7m/s spots an insect 23.8 meters away. How much must the bat increase its speed

to reach the bug in 1.8 seconds.
Physics
1 answer:
RideAnS [48]3 years ago
5 0

Here's how I would do it:

How far does he have to go to catch the bug ?  <u>23.8 meters</u>

How soon does he want to get there ?  <u>1.8 seconds</u>

What speed does he need ?  (23.8 m) / (1.8 sec) = <u>13.222 m/sec</u>

What speed is he flying now?    <u>3.7m/s</u>

How much does he need to increase it ?  (13.222 - 3.7) =  <em>9.5 m/s</em> faster


You might be interested in
Imagine that a hypothetical life form is discovered on our moon and transported to Earth. On a hot day, this life form begins to
almond37 [142]

Answer:

The heat of vaporization 580 cal/g times 602g = cal in human  and do the same for life form.

Explanation:

4 0
4 years ago
A 5.67-kg block of wood is attached to a spring with a spring constant of 150 N/m. The block is free to slide on a horizontal fr
nikklg [1K]

Answer:

v=0.94 m/s

Explanation:

Given that

M= 5.67 kg

k= 150 N/m

m=1 kg

μ = 0.45

The maximum acceleration of upper block can be μ g.

 a= μ g                          ( g = 10 m/s²)

The maximum acceleration of system will ω²X.

ω = natural frequency

X=maximum displacement

For top stop slipping

μ g  =ω²X

We know for spring mass system natural frequency given as

\omega=\sqrt{\dfrac{k}{M+m}}

By putting the values

\omega=\sqrt{\dfrac{150}{5.67+1}}

ω = 4.47 rad/s

μ g  =ω²X

By putting the values

0.45 x 10 = 4.47² X

X = 0.2 m

From energy conservation

\dfrac{1}{2}kX^2=\dfrac{1}{2}(m+M)v^2

kX^2=(m+M)v^2

150 x 0.2²=6.67 v²

v=0.94 m/s

This is the maximum speed of system.

7 0
3 years ago
Read 2 more answers
In a playground, there is a small merry-go-round of radius 1.20 m and mass 160 kg. Its radius of gyration is 91.0 cm. (Radius of
aksik [14]

Answer:

a) 145.6kgm^2

b) 158.4kg-m^2/s

c) 0.76rads/s

Explanation:

Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation 

(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and

(c) the angular speed of the merry-go-round and child after the child has jumped on.

a) From I = MK^2

I = (160Kg)(0.91m)^2

I = 145.6kgm^2

b) The magnitude of the angular momentum is given by:

L= r × p The raduis and momentum are perpendicular.

L = r × mc

L = (1.20m)(44.0kg)(3.0m/s)

L = 158.4kg-m^2/s

c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:

L = Iw

158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]

w = 158.6/208.96

w = 0.76rad/s

7 0
3 years ago
Susan, driving north at 53 mphmph , and Shawn, driving east at 63 mphmph , are approaching an intersection. Part A What is Shawn
mafiozo [28]

Answer:

Shawn's speed relative to Susan's speed = 10 mph

Resultant velocity = 82.32 mph

Explanation:

The given data :-

i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.

ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.

iii) The speed of both Susan and Shawn is relative to earth.

iv) The angle between Susan in north and Shawn in east is 90°.

We have to find Shawn's speed relative to Susan's speed.

v₂₁ = v₂ - v₁   = 63 - 53 = 10 mph

Resultant velocity,

v = \sqrt{v_{2} ^{2}+ v_{1} ^{2}  }  =\sqrt{63^{2} +53^{2} }

v = 82.32 mph

5 0
4 years ago
A cyclotron designed to accelerate protons has a magnetic field of magnitude 0.15 T over a region of radius 7.4 m. The charge on
klio [65]

Explanation:

It is given that,

Magnetic field, B = 0.15 T

Charge on a proton, q=1.60218\times 10^{-19}\ C

Mass of a proton, m=1.67262 \times 10^{-27}\ kg

The cyclotron frequency is given by :

f=\dfrac{qB}{2\pi m}

f=\dfrac{1.60218\times 10^{-19}\ C\times 0.15\ T}{2\pi \times 1.67262 \times 10^{-27}\ kg}

f = 2286785.40 Hz

or

\omega=14368296.44\ rad/s

\omega=1.43\times 10^7 rad/s

Hence, this is the required solution.

8 0
3 years ago
Other questions:
  • Screws and wedges are modified blank
    15·1 answer
  • Please answer the question number 2 in this pic in detail
    15·1 answer
  • WILL MARK BRAINLIEST!!!!!!!!
    9·1 answer
  • Two coaxial cylindrical conductors are shown in perspective and cross-section above. The inner cylinder has radius a = 2 cm, len
    6·1 answer
  • A 7.1 cm diameter horizontal pipe gradually narrows to 5.4 cm . When water flows through this pipe at a certain rate, the gauge
    6·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS AND I NEED ALL CORRECT ANSWERS ONLY!!!
    13·2 answers
  • How does the solar wind affect earth
    12·1 answer
  • A cabinet weighing 100 N is placed on a floor. The amount of contact area between the cabinet and the floor is 0.5 m2. How much
    5·1 answer
  • When a 15.00 kg mass is attached to a vertical spring, the spring is stretched 2.0 m such that the mass is 6.0 m above the table
    7·1 answer
  • Given a friction force of 1.10 N, how fast is a 0.510 kg book moving in 0.50 s if it starts at rest and you are applying a force
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!