Answer:
78.4 KN/m
Explanation:
Given
mass of person 'm' =80 kg
car dips about i.e spring stretched 'x'= 1 cm => 0.01m
acceleration due to gravity 'g'= 9.8 m/s^2
as we know that,in order to find approximate spring constant we use Hooke's Law i.e F=kx
where,
F = the force needed
x= distance the spring is stretched or compressed beyond its natural length
k= constant of proportionality called the spring constant.
F=kx
---> (since f=mg)
mg=kx
k=(mg)/x
k=(80 x 9.8)/ 0.01
k=78.4x
k=78.4 KN/m
For a body moving at a uniform velocity you can calculate the speed by dividing the distance traveled by the amount of time it took, for example one mile in 1/2 hour would give you 2 miles per hour. If the velocity is non-uniform all you can say is what the average speed is.
HOPE IT HELPS YOU
Answer:
a. 79.1 N
b. 344 J
c. 344 J
d. 0 J
e. 0 J
Explanation:
a. Since the crate has a constant velocity, its net force must be 0 according to Newton's 1st law. The push force
by the worker must be equal to the friction force
on the crate, which is the product of friction coefficient μ and normal force N:
Let g = 9.81 m/s2

b. The work is done on the crate by this force is the product of its force
and the distance traveled s = 4.35

c. The work is done on the crate by friction force is also the product of friction force and the distance traveled s = 4.35

This work is negative because the friction vector is in the opposite direction with the distance vector
d. As both the normal force and gravity are perpendicular to the distance vector, the work done by those forces is 0. In other words, these forces do not make any work.
e. The total work done on the crate would be sum of the work done by the pushing force and the work done by friction

Denser materials tend to be closer to earths center due to their mass gravity is shown by the equation mg
Which stands for mass x gravity.
If a star is moving towards Earth, shift towards the blue end of the spectrum, this is called blue shift. If the star is moving away from Earth the light from that star will be red and is called red shift .
The faster a star moves towards the earth, the more its light is shifted to higher frequencies. In contrast, if a star is moving away from the earth, its light is shifted to lower frequencies on the color spectrum
if a star is moving towards Earth, it appears to emit light that is shorter in wavelength compared to a source of light that isn't moving. Because shorter wavelengths correspond to a shift towards the blue end of the spectrum, this is called blue shift.
If the star is moving away from Earth, its light will lose energy to reach Earth, therefore the light from that star will be red and is called red shift
learn more about blue shift :
brainly.com/question/5368237?referrer=searchResults
#SPJ4