Answer:
v₂> v₃ velocity canoe is more than velocity fishing boat
Explanation:
For this exercise we must define a system consisting of the girl, Sally and the boat, in one case the canoe and in the other the fishing boat; for this system we can use moment conservation
Initial moment. Before the jump
p₀ = (M + m₂) v
Final moment. After the jump
= M v₁ - m₂ v₂
Where m and v are the masses and speed of the canoe
p₀ = p_{f}
(M + m₂) v = M v₁ - m₂ v₂
In the case of changing the canoe for the heaviest fishing boat, the final moment is
p_{f} = M v₁ - m₃ v₃
p₀ = p_{f}
(M + m₃) v = M v₁ - m₃ v₃
Since the canoe is stopped the speed v = 0, we write the speed of each boat
Canoe
0 = M v₁ - m₂ v₂
v₂ = M / m₂ v₁
Fishing boat
0 = M v₁ - m₃ v₃
v₃ = M / m₃ v₁
Since the masses of the fishing boat (m₃) is greater than the mass of the canoe (m₂) the speed of the fishing boat is less than the speed of the canoe, we can find the relationship between the two speeds
v₂ / v₃ = m₃ / m₂
Here you can see what v₂> v₃ velocity canoe is more than velocity fishing boat
Answer: the answer is d
Explanation: there are not more than 10 violations within a twelve month period hope this helps
(AB) & (CD)
Most machines are fueled by gasoline and electricity
It seems that you have missed the necessary options for us to answer this question so I had to look for it. Anyway, here is the answer. The one that occurs first in the generation of an action potential is that t<span>he membrane depolarizes. Hope this answers your question. Have a great day!</span>
Answer:
4.24m/s
Explanation:
Potential energy at the top= kinetic energy at the button
But kinetic energy= sum of linear and rotational kinetic energy of the hoop
PE= mgh
KE= 1/2 mv^2
RE= 1/2 I ω^2
Where
m= mass of the hoop
v= linear velocity
g= acceleration due to gravity
h= height
I= moment of inertia
ω= angular velocity of the hoop.
But
I = m r^2 for hoop and ω = v/r
giving
m g h = 1/2 m v^2 + 1/2 (m r^2) (v^2/r^2) = 1/2 m v^2 + 1/2 m v^2 = m v^2
and m's cancel
g h = v^2
Hence
v= √gh
v= √10×1.8
v= 4.24m/s