Answer:
Results from method B is more reliable than method A.
Explanation:
The two method that are used for the analysis produced different results. The first method that is method A gives higher value of the iodine content than the method B.
When
was added to water, method A showed an increased in the iodine content and it increases with the increase in the amount of
.
Where as in the method B, there is no change in the results. Therefore the measurements provided by the method A shows an inference of
ion.
The measurement of the iodine content is affected by the presence of the ion
in water.
Since in method B there is no change in measurement, it is independent of the presence
ion in water.
As higher iodine content is given by method A, so
ion must be present in original water that must be interfering the measurement. Hence, method B is more reliable.
Here's The Answer: <span> K = 50.2 = (2x)^2 / (0.1-x)^2
x = 0.078
so H2 eq = 0.022 M
Hope this helped! :D
</span>
Density is given as mass / volume.
Mass is the sphere is 100 g.
Volume of the sphere = (pi∗r3)∗4/3
(
p
i
∗
r
3
)
∗
4
/
3
=(4∗22∗3∗3∗3)/(7∗3)cm3
=
(
4
∗
22
∗
3
∗
3
∗
3
)
/
(
7
∗
3
)
c
m
3
=792/7
=
792
/
7
cm3
3
Therefore, Density is 100/(792/7)g/cm3
100
/
(
792
/
7
)
g
/
c
m
3
Which gives: density = 0.883838 g/cm3
g
/
c
m
3
If you want to change the units to kg per cubic metres, then we need to divide this value by 1000( for g to kg) and multiply by 100 * 100 * 100 (for cm to m).
This makes the density to be 883.83 kg/m3
The last option, 1 meter/ 10 millimeters is not a valid conversion factor.
It should be 1000m Instead of 1 meter/ 10 millimeter since 1m=1000mm
Answer:
C
Explanation:
For electromagnetic waves frequency X wavelength = speed of light
f * 2.2 x 10^-11 = 3 x 10^8 m/s
f = 3 x 10^8 / 2.2 x 10^-11
= 1.36 x 10 ^19
= 1.4 x 10^19 with two significant digits