ΔHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
Bond enthalpies,
N ≡ N ⇒ 945 kJ mol⁻¹
N - Cl ⇒ 192 kJ mol⁻¹
Cl - Cl⇒ 242 kJ mol⁻¹
According to the balanced equation,
ΣδΗ(bond breaking) = N ≡ N x 1 + Cl - Cl x 3
= 945 + 3(242)
= 1671 kJ mol⁻¹
ΣδΗ(bond making) = N - Cl x 3 x 2
= 192 x 6
= 1152 kJ mol⁻¹
δHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
= 1671 kJ mol⁻¹ - 1152 kJ mol⁻¹
= 519 kJ mol⁻¹
Answer: Option (C) is the correct answer.
Explanation:
Molecules in a liquid have less force of attraction as compared to solids. But liquid molecules have more force of attraction as compared to gases.
Since molecules of a gas are held together by weak Vander waal forces, therefore, they expand to fill the container whereas molecules in a liquid are not expanded in a container like gases because of more force of attraction within molecules of liquids as compared to gases.
Hence, a liquid can take the shape of container in which it is kept.
Thus, we can conclude that out of the given options, a liquid change to take the shape of its container but NOT expand to fill the container itself because the particles of a liquid are held together loosely enough to flow, but not so loose that they expand.
Answer:
Molecules in liquids are held to other molecules by intermolecular interactions, which are weaker than the intramolecular interactions that hold the atoms together within molecules and polyatomic ions.
do you mean polymers or organic compounds?
Solids are packed together closely, liquids are farther apart but still relatively close, and gases are very far apart with lots of space.