1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
1 year ago
11

The most important reason to wear your seat belt is to protect you from:

Engineering
1 answer:
valkas [14]1 year ago
3 0

Answer:

#1. Saves Lives. The bottom line is seatbelts save lives.

Explanation:

You might be interested in
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Consider a resistor made of pure silicon with a cross-sectional area pf 0.5 μm2, and a length of 50 μm. What is the resistance o
lukranit [14]

Answer: 24 pA

Explanation:

As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.

Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵  Ω  cm.

The resistance R of a given resistor, is expressed by the following formula:

R = ρ L / A

Replacing by the values for resistivity, L and A, we have

R = 2.1. 10⁵ Ω  cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2

R = 2.1. 10¹¹ Ω

Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:

I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA

7 0
3 years ago
Water flows half-full through a 50-cm-diameter steel channel at an average velocity of 4.3 m/s. Determine the volume flow rate a
Citrus2011 [14]

Um, I do not know what to say ?

3 0
2 years ago
The water in a 25-m-deep reservoir is kept inside by a 140-m-wide wall whose cross section is an equilateral triangle as shown i
koban [17]

Answer:  (a) 9.00 Mega Newtons or 9.00 * 10^6 N

               (b)  17.1 m

Explanation:  The length of wall under the surface can be given by

                                            b=25m/sin(60)\\=28.867

The average pressure on the surface of the wall is the pressure at the centeroid of the equilateral triangular block which can be then be calculated by multiplying it with the Plate Area which will provide us with the Resultant force.

F(resultant) = Pavg ( A) = (Patm +  \rho g h c)*A \\= [100000 N/m^2 + (1000 kg/m^3 * 9.81 m/s^2 * 25m/2)]* (140*25m/sin60)\\= 8.997*10^8 N \\= 9.0*10^8 N

Noting from the Bernoulli  equation that

Po/\rho g sin60 = 100000/1000 * 9.81* sin(60) = 11.77 m \\ \\

From the second image attached the distance of the pressure center from the free surface of the water along the surface of the wall is given by:

Yp = s+\frac{b}{2} +\frac{b^2}{s+\frac{b}{2}+Po/\rho g sin60}= 0+\frac{28.87}{2} +\frac{28.87^2}{0+\frac{28.87}{2}+100000 /1000 *9.81 sin60} = 17.1 m

Substituting the values gives us the the distance of the surface to be equal to = 17.1 m

7 0
3 years ago
An example of Ferrous alloy is Brass a)-True b)-False
djyliett [7]

Answer: False

Explanation: No, brass is not a ferrous alloy.  

      Ferrous alloys are those alloy which contain iron like cast iron, steel, strain-less steel, high carbon steel. Brass on the other hand does not contain any composition. of iron hence it can not be considered as a ferrous alloy. Brass comes under the category of non- ferrous made with a composition of copper and zinc, however their proportion is not strict and we can add other elements like aluminium or lead to alter its durability or corrosiveness.  

5 0
3 years ago
Other questions:
  • A three-phase, 480 Volt, 120 horsepower, 50 Hertz four-pole induction motor delivers rated output power at a slip of 4%. Determi
    12·2 answers
  • Can anybody teach me how to make an app with flask and pygame together?​
    10·1 answer
  • In order to avoid slipping in the shop, your footwear should __
    10·2 answers
  • Give two methods on how powder is produced in powder metallurgy.
    5·2 answers
  • Module 42 Review and Assessment
    7·1 answer
  • A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm (0.8 in.) on an edge is pulled intension with a load o
    6·1 answer
  • What is one of the most common ways in which workers get hurt around machines?
    14·1 answer
  • 1 A power transmission includes a belt drive, a chain drive and a gear drive. Which of the following is the best arrangement bet
    5·1 answer
  • In-------process the hot drawn bar or rod is pulled through the die.
    7·1 answer
  • I am trying to make a vacuum cannon but all I can use to get out the air is a speed pump to give air to bicycles. I need to make
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!