1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
2 years ago
9

Binary classification algorithm

Engineering
1 answer:
Mila [183]2 years ago
3 0

Answer:

What is this exactly?

Explanation:

If your asking for the definition, binary classification is the task of classifying the elements of a set into two groups on the basis of a classification rule.

You might be interested in
A small pad subjected to a shearing force is deformed at the top of the pad 0.08 in. The height of the pad is 1.38 in. What is t
Aleksandr-060686 [28]

Answer:

The shear strain is 0.05797 rad.

Explanation:

Shear strain is the ratio of change in dimension along the shearing load direction to the height of the plate under application of shear load. Width of the plate remains same. Length of the plate slides under shear load.

Step1

Given:

Height of the pad is 1.38 in.

Deformation at the top of the pad is 0.08 in.

Calculation:

Step2

Shear strain is calculated as follows:

tan\phi=\frac{\bigtriangleup l}{h}

tan\phi=\frac{0.08}{1.38}

tan\phi= 0.05797

For small angle of \phi, tan\phi can take as\phi.

\phi = 0.05797 rad.

Thus, the shear strain is 0.05797 rad.

7 0
3 years ago
How does heat conduction differ from convection?
Helga [31]

Explanation:

Conduction:

     Heat transfer in the conduction occurs due to movement of molecule or we can say that due to movement of electrons in the two end of same the body. Generally,  phenomenon of conduction happens in the case of solid . In conduction heat transfer takes places due to direct contact of two bodies.

Convection:

              In convection heat transfer of fluid takes place due to density difference .In simple words we can say that heat transfer occur due to motion of fluid.

7 0
3 years ago
Read 2 more answers
Why might construction crews want to install pipes before the foundation is poured?
denpristay [2]
I’m a concrete mason myself and I can tell you it is a pain in the butt to Roto hammer a hole into the concrete to put the pipe in it’s a lot easier to just pour the concrete around it
6 0
3 years ago
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
4 years ago
A water pump delivers 3 hp of shaft power when operating. If the pressure differential between the outlet and the inlet of the p
Natali [406]

Answer:

Mechanical Efficiency =  83.51%

Explanation:

Given Data:

Pressure difference = ΔP=1.2 Psi

Flow rate = V=8ft^3/s\\

Power of Pump = 3 hp

Required:

Mechanical Efficiency

Solution:

We will first bring the change the units of given data into SI units.

P=1.2*6.895 = 8.274KPa\\V=8*0.00283=0.226 m^3/s\\P=3*0.746=2.238KW

Now we will find the change in energy.

Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.

Thus change in energy is

=(Mass * change in P)/density\\= \frac{M*P}{p}\\\\

As we know that Mass = Volume x density

substituting the value

Energy = Volume * density x ΔP / density

Change in energy = Volumetric flow x ΔP

Change in energy = 0.226 x 8.274 = 1.869 KW

Now mechanical efficiency = change in energy / work done by shaft

Efficiency = 1.869 / 2.238

Efficiency = 0.8351 = 83.51%

5 0
3 years ago
Other questions:
  • Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz and a fifth-order 0.5 dB equal-ripple response. As
    9·1 answer
  • Consider two water tanks filled with water. The first tank is 8 m high and is stationary, while the second tank is 2 m high and
    12·2 answers
  • Which of the following is an example of seeking accreditation?
    7·1 answer
  • Underlining words and highlighting dates are part of a student's personal note taking key.
    6·2 answers
  • Going back the b beginning of the process is common in engineering true or false?
    15·1 answer
  • Which one of the following is not an economic want?
    6·1 answer
  • Set the leak rate to zero and choose a non-zero value for the proportional feedback gain.Restart the simulation and turn on the
    5·1 answer
  • For each of the resistors shown below, use Ohm's law to calculate the unknown quantity, Be sure to put your answer in proper eng
    8·1 answer
  • How do you identify all sensors, functions, and where we can use them?
    12·1 answer
  • a low velocity fastening system that is used to drive steel pins or threaded studs into a masonry and steel is a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!