1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
14

A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.50 m and a mass of 2.2 kg is p

laced at its free end on a frictionless slope which makes an angle of 41 ∘ with respect to the horizontal. The spring is then released.
Required:
a. If the mass is not attached to the spring, how far up the slope from the compressed point will the mass move before coming to rest?
b. If the mass is attached to the spring, how far up the slope from the compressed point will the mass move before coming to rest?
c. Now the incline has a coefficient of kinetic friction μk. If the block, attached to the spring, is observed to stop just as it reaches the spring's equilibrium position, what is the coefficient of friction μk?

Engineering
2 answers:
OLEGan [10]3 years ago
7 0

Answer:

A) l = 0.619m

B) l = 0.596m

C) μ = 0.314

Explanation:

The data given is:

k = 70 N/m

x = 0.5 m

m = 2.2 kg

θ = 41°

(FIGURES FOR EACH PART ARE ATTACHED AT THE BOTTOM. CONSULT THEM FOR BETTER UNDERSTANDING)

<h3>Part A</h3>

Gain in Gravitational Potential Energy = Loss in Elastic Potential Energy

mgh = (1/2)kx²

(2.2)(9.8)h = (1/2)(70)(0.5)²

h = 0.406 m

sinθ = h/l

l = h / sinθ

l = 0.406/sin41

l = 0.619m

<h3>Part B</h3>

Loss in Elastic Potential Energy in compressed spring = Gain in Gravitational Potential Energy + Gain in Elastic Potential Energy in stretched spring

(1/2)kx² = mgh + (1/2)k(l - 0.5)²

(1/2)(70)(0.5)² = (2.2)(9.8)(l·sin41)) + (1/2)(70)(l² - l + 1/4)

8.75 = 14.15(l) + 35(l²) - 35(l) + 8.75

35(l²) -20.85(l) = 0

l = 0.596m

<h3>Part C</h3>

Loss in Elastic Potential Energy = Gain in Gravitational Potential Energy + Work done against friction

(1/2)kx² = mgh + Fd

(1/2)kx² = mg(dsinθ) + μRd

(1/2)kx² = mg(dsinθ) + μ(mg · cosθ)d

(1/2)kx² = mgd (sinθ + μ(cosθ))

(1/2)(70)(0.5)² = (2)(9.8)(0.5) (sin41 + μcos41)

8.75 = 6.43 + 7.4μ

μ = 0.314

<h3 /><h3 />

vodka [1.7K]3 years ago
3 0

Answer:

a) The mass moves a distance of 0.625 m up the slope before coming to rest

b) The distance moved by the mass when it is connected to the spring is 0.6 m

c) \mu = 0.206

Explanation:

Spring constant, k = 70 N/m

Compression, x = 0.50 m

Mass placed at the free end, m = 2.2 kg

angle, θ = 41°

Potential Energy stored in the spring, PE= 0.5 kx^2

PE = 0.5 * 70 * 0.5^2\\PE = 8.75 J

According to the principle of energy conservation

PE = mgh

8.75 = 2.2 * 9.8 * h

h = 0.41

If the mass moves a distance d from the spring

sin 41 = h/d

sin 41 = 0.41/d

d = 0.41/(sin 41)

d = 0.625 m

The mass moves a distance of 0.625 m up the slope before coming to rest

b) If the mass is attached to the spring

According to energy conservation principle:

Initial PE of spring = Final PE of spring + PE of block

0.5kx_1^2 = 0.5kx_2^2 + mgh\\x_2 = d - x_1 = d - 0.5\\h = d sin 41\\0.5*70*0.5^2 = 0.5*70*(d-0.5)^2 + 2.2*9.8*d*sin41\\8.75 = 35(d^2 - d + 0.25) + 14.15d\\8.75 = 35d^2 - 35d + 8.75 + 14.15d\\35d^2 = 20.85d\\d = 0.6 m

The distance moved by the mass when it is connected to the spring is 0.6 m

3) The spring potential is converted to increased PE and work within the system.

mgh = Fd + 0.5kx²...........(1)

d = x , h = dsinθ

kinetic friction force , F = μmgcosθ

mgdsinθ + μmg(cosθ)d = 0.5kd²

mgsinθ + μmgcosθ = 0.5kd

sinθ + μcosθ = kd/(2mg)

\mu = \frac{\frac{kd}{2mg} - sin\theta}{cos\theta} \\\\\mu = \frac{\frac{70*0.5}{2*2.2*9.8} - sin41}{cos41} \\\\\mu = 0.206

You might be interested in
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
3 years ago
Air at 293k and 1atm flow over a flat plate at 5m/s. The plate is 5m wide and 6m long. (a) Determine the boundary layer thicknes
loris [4]

Answer:

a). 8.67 x 10^{-3} m

b).0.3011 m

c).0.0719 m

d).0.2137 N

e).1.792 N

Explanation:

Given :

Temperature of air, T = 293 K

Air Velocity, U = 5 m/s

Length of the plate is L  = 6 m

Width of the plate is b = 5 m

Therefore Dynamic viscosity of air at temperature 293 K is, μ = 1.822 X 10^{-5} Pa-s

We know density of air is ρ = 1.21 kg /m^{3}

Now we can find the Reyonld no at x = 1 m from the leading edge

Re = \frac{\rho .U.x}{\mu }

Re = \frac{1.21 \times 5\times 1}{1.822\times 10^{-5} }

Re = 332052.6

Therefore the flow is laminar.

Hence boundary layer thickness is

δ = \frac{5.x}{\sqrt{Re}}

   = \frac{5\times 1}{\sqrt{332052.6}}

   = 8.67 x 10^{-3} m

a). Boundary layer thickness at x = 1 is δ = 8.67 X 10^{-3} m

b). Given Re = 100000

    Therefore the critical distance from the leading edge can be found by,

     Re = \frac{\rho .U.x}{\mu }

     100000 = \frac{1.21\times5\times x}{1.822 \times10^{-5}}

     x = 0.3011 m

c). Given x = 3 m from the leading edge

    The Reyonld no at x = 3 m from the leading edge

     Re = \frac{\rho .U.x}{\mu }

     Re = \frac{1.21 \times 5\times 3}{1.822\times 10^{-5} }

     Re = 996158.06

Therefore the flow is turbulent.

Therefore for a turbulent flow, boundary layer thickness is

    δ = \frac{0.38\times x}{Re^{\frac{1}{5}}}

       = \frac{0.38\times 3}{996158.06^{\frac{1}{5}}}

       = 0.0719 m

d). Distance from the leading edge upto which the flow will be laminar,

  Re = \frac{\rho \times U\times x}{\mu }

5 X 10^{5} = \frac{1.21 \times 5\times x}{1.822\times 10^{-5}}}

 x = 1.505 m

We know that the force acting on the plate is

F_{D} = \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

and C_{D} at x= 1.505 for a laminar flow is = \frac{1.328}{\sqrt{Re}}

                                                                         = \frac{1.328}{\sqrt{5\times10 ^{5}}}

                                                                       = 1.878 x 10^{-3}

Therefore, F_{D} =  \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

                                          = \frac{1}{2}\times 1.878\times 10^{-3}\times 1.21\times (5\times 1.505)\times 5^{2}

                                         = 0.2137 N

e). The flow is turbulent at the end of the plate.

  Re = \frac{\rho \times U\times x}{\mu }

       = \frac{1.21 \times 5\times 6}{1.822\times 10^{-5} }

       = 1992316

Therefore C_{D} = \frac{0.072}{Re^{\frac{1}{5}}}

                                           = \frac{0.072}{1992316^{\frac{1}{5}}}

                                           = 3.95 x 10^{-3}

Therefore F_{D} = \frac{1}{2}\times C_{D}\times \rho\times A\times U^{2}

                                           = \frac{1}{2}\times 3.95\times 10^{-3}\times 1.21\times (5\times 6)\times 5^{2}

                                          = 1.792 N

3 0
3 years ago
What type of cartilage provides support and shock absorption?.
Katena32 [7]

Answer:

fibrocartilage

7 0
2 years ago
Say you have a random, unordered list containing 4096 four-digit numbers. Describe the most efficient way to: sort the list and
Debora [2.8K]

Answer:

Answer explained below

Explanation:

It is given that numbers are four-digit so maximum value of a number in this list could be 9999.

So we need to sort a list of integers, where each integer lies between [0,9999].

For these given constraints we can use counting sort which will run in linear time i.e. O(n).

--------------------------------------------------------------------------------

Psuedo Code:

countSort(int numList[]) {

int count[10000];

count[i] = 0; for all i;

for(int num in numList){

count[num]+= 1;

}

return count;

}

--------------------------------------------------------------------------------

Searching in this count array will be just O(1).

E.g. Lets say we want to search if 3 was present in the original list.

Case 1: it was present in the original list:

Then the count[3] would have been incremented by our sorting algorithm. so in case element exists then count value of that element will be greater than 0.

Case 2: it was not present:

In this case count[3] will remain at 0. so in case element does not exist then count of that element will be 0.

So to search for an element, say x, we just need to check if count[x]>0.

So search is O(1).

Run times:

Sorting: O(n)

Search: O(1)

6 0
3 years ago
Economics is the study of how individuals and societies make choices under the condition of
k0ka [10]

Answer:

ig scarcity

Explanation:

Hope it Helps!!!

3 0
1 year ago
Other questions:
  • Water at 20oC, with a free-stream velocity of 1.5 m/s, flows over a circular pipe with diameter of 2.0 cm and surface temperatur
    13·1 answer
  • I WILL GIVE BRAINLIEST IF ANSWER FAST What is the measurement of this dial caliper?
    5·2 answers
  • A classroom that normally contains 40 people is to be air-conditioned with window air-conditioning units of 5 kW cooling capacit
    6·1 answer
  • The spring has a stiffness k = 200 N&gt;m and an unstretched length of 0.5 m. If it is attached to the 3-kg smooth collar and th
    12·1 answer
  • Consider a rectangular fin that is used to cool a motorcycle engine. The fin is 0.15m long and at a temperature of 250C, while t
    5·1 answer
  • 1) Each of the following would be considered company-confidential except
    10·1 answer
  • A _______ contact allows current to flow when the switch's operator is not activated.?
    6·1 answer
  • A solid steel shaft ABCDE turns freely in bearings at points A and E. The shaft is driven by the gear at C, which applies a torq
    14·1 answer
  • Guyss I seriously and urgently need help what are the steps to build a headgear ??​
    5·2 answers
  • Two basic types of mechanical fuel injector systems?​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!