Answer:
We get ammonia because the forward and reverse reactions are happening at the same rates.
If 3 mol of
H
2
is mixed in a sealed vessel with 1 mol
N
2
under suitable conditions then they will react to form ammonia
N
H
3
:
N
2
+
3
H
2
→
2
N
H
3
At the start of the reaction the concentration of the
N
2
and
H
2
are high. As soon as some
N
H
3
is formed the reverse reaction will start to occur:
2
N
H
3
→
N
2
+
3
H
2
The rate of the reaction depends on concentration so the forward reaction will be fast at first when the concentration of the reactants is high. It will slow down as their concentration decreases.
By the same reasoning the reverse reaction will be slow at first then increase. These two processes continue until a point is reached when the rates of the forward and reverse reactions are equal.
We now state that the reaction has reached equilibrium which we show by:
N
2
+
3
H
2
⇌
2
N
H
3
It is described as "dynamic" because the forward and reverse reactions are happening at the same time although the concentrations of all the species remain constant.
So although
N
H
3
is constantly breaking down, more is being formed at a constant rate.
In the Haber Process the system is actually not allowed to completely reach equilibrium as the process is continuous, as described in Mukhtar's answer.
Explanation:
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.
Answer:

Explanation:
We are given the volumes and concentrations of two reactants, so this is a limiting reactant problem.
We know that we will need moles, so, lets assemble all the data in one place.
Cu²⁺ + 4NH₃ ⟶ Cu(NH₃)₄²⁺
V/mL: 3.00 7.00
c/mol·L⁻¹: 0.050 0.20
1. Identify the limiting reactant
(a) Calculate the moles of each reactant

(b) Calculate the moles of Cu(NH₃)₄²⁺ that can be formed from each reactant
(i) From Cu²⁺

(ii) From NH₃

NH₃ is the limiting reactant, because it forms fewer moles of the complex ion.
(c) Concentration of the complex ion

As you go across a period, radius shrinks because you are adding protons. The added positive charge increases pull on the electron shells.
As you go down a group, radius gets larger because you are increasing shells of electrons. This increases shielding of the nucleus' positive charge, so the electrons are not pulled in as much.
Answer:
velocity = 29925×10⁶ m/s
Explanation:
Given data:
Frequency = 35 MHz
Wavelength = 855 m
Velocity = ?
Solution:
MHz to Hz
35×10⁶ Hz
Formula:
<em>velocity = Wavelength × Frequency</em>
velocity = 855 m × 35×10⁶ Hz
velocity = 29925×10⁶ m/s
Hz = s⁻¹