Answer: The average kinetic energy is proportional to the absolute temperature of the gas. Gas particles are in random motion. Gas particles have no volume. And the collisions between gas particles are elastic.
Explanation: I heard this question before, I think. Hope this helps!
Answer : The freezing point of the solution is, 260.503 K
Solution : Given,
Mass of methanol (solute) = 215 g
Mass of water (solvent) = 1000 g = 1 kg (1 kg = 1000 g)
Freezing depression constant = 
Formula used :

where,
= freezing point of water = 
= freezing point of solution
= freezing point constant
= mass of solute
= mass of solvent
= molar mass of solute
Now put all the given values in the above formula, we get

By rearranging the terms, we get the freezing point of solution.

Therefore, the freezing point of the solution is, 260.503 K
<u>Answer:</u> The predicted cell potential of the cell is +0.0587 V
<u>Explanation:</u>
The half reactions for the cell is:
<u>Oxidation half reaction (anode):</u> 
<u>Reduction half reaction (cathode):</u> 
In this case, the cathode and anode both are same. So,
will be equal to zero.
To calculate cell potential of the cell, we use the equation given by Nernst, which is:
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[M^{2+}_{(diluted)}]}{[M^{2+}_{(concentrated)}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BM%5E%7B2%2B%7D_%7B%28diluted%29%7D%5D%7D%7B%5BM%5E%7B2%2B%7D_%7B%28concentrated%29%7D%5D%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
= 0.05 M
= 4.808 M
Putting values in above equation, we get:


Hence, the predicted cell potential of the cell is +0.0587 V
Answer:
47.867
Explanation: It's Titanium because the atomic number is the number of protons.