Answer/Explanation:
Methanol has a molecular weight (32.04 g/mol), low-boiling point and because of its low boiling point, methanol readily evaporates at room temperature.
Under these specified non-standard conditions, the partial pressure of methanol is lower than its vapor pressure and this explains the reason for the spontaneous evaporation exhibited by methanol.
Once the torch is lit, the acetylene flow must be increased until the flame stops smoking <span>before the oxygen is turned on for adjustment in order to keep the tip of the torch cool.
You should also note that while lighting the torch, you should keep the spark lighter near the tip but not covering it.</span>
The balanced chemical reaction for this would be written as:
2Mg + O2 = 2MgO
We use this reaction and the amount of the reactant given to calculate for the amount of magnesium oxide that is produced. We do as follows:
1.5 g Mg (1 mol / 24.31 g) ( 2 mol MgO / 2 mol Mg ) (40.30 g /1 mol ) = 2.49 g MgO produced
Answer:
43.868 J
Explanation:
Kinetic energy of a body is the amount of energy possessed by a moving body. The SI unit of kinetic energy is the joule (kg⋅m²⋅s⁻²).
According to classical mechanics, kinetic energy = 1/2 m·v²
Where, m= mass in kg and v= velocity in m/s
Given: m = 19.2 lb and v = 7.10 miles/h
Since, 1 lb= 0.453592 kg
∴ m = 19.2 lb = 19.2 × 0.453592 kg = 8.709 kg
Also, 1 mi = 1609.34 m and 1 h = 3600 sec
∴ v = 7.10 mi/h = 7.10 × 1609.34 m ÷ 3600 sec = 3.174 m/sec
Therefore, <u>kinetic energy of the goose</u> = 1/2 m·v² = 1/2 × (8.709 kg)× (3.174 m/sec)² = 43.868 J
Answer:
the correct answer is option 'b': More than
Explanation:
The 2 situations are represented in the attached figures below
When an object is placed in air it is acted upon by force of gravity of earth which is measured as weight of the object.
While as when any object is submerged partially or completely in any fluid the fluid exerts a force in upward direction and this force is known as force of buoyancy and it's magnitude is given by Archimedes law as equal to the weight of the fluid that the body displaces, hence the effective force in the downward direction direction thus the apparent weight of the object in water decreases.