<span>1,3-cylohexadiene i synthesized starting from cyclohexane in following 4 steps.
1) Free Radical Substitution Rxn: Halogenation of cyclohexane in the presence of UV yield chlorocyclohexane.
2) Elimination Rxn: Dehydrohalogenation of chlorocyclohexane yields cyclohexene.
3) Halogenation of Cyclohexene (
Electrophillic Addition Rxn) gives 1,2-dihalocyclohexane.
4) Elemination Rxn: When dibromocyclohexane is treated with KOH and heated it gives 1,3-cyclohexadiene as shown below,</span>
Answer:
phosphorous- 5
calcium- 2
nitrogen- 3 or 5
iron- 8 (transition metals use subshells as valence electrons)
argon- 8
potassium- 1
helium- 2
magnesium- 2
sulfur- 6
lithium- 1
iodine- 7
oxygen- 6
barium- 2
aluminum- 3
hydrogen- 1
xenon- 8
copper- 1
Source: my own chemistry notes
Answer:
High activation energy is the reason behind unsuccessful reaction.
Explanation:
There are two types of reaction: (1) thermodynamically controlled reaction and (2) kinetically controlled reaction.
Thermodynamically controlled reaction are associated with change in enthalpy during reaction. More negative the enthalpy change, more favored will be the reaction.
Kinetically controlled reaction are associated with activation energy of a reaction. The lower the activation energy value, the more rapid will be the reaction.
Here, reaction between
and
is thermodynamically favored due to negative enthalpy change but the high activation energy does not allow the reaction to take place by simple mixing.
B) Seawater. Because, it all has the same consistency. With the other choices, like vegetable soup, in one spoon full you may get a bit of potato but in another spoon full you may get a lima bean.