Answer:
The nucleus contains the majority of an atom's mass because protons and neutrons are much heavier than electrons, whereas electrons occupy almost all of an atom's volume. The diameter of an atom is on the order of 10−10 m, whereas the diameter of the nucleus is roughly 10−15 m—about 100,000 times smaller.
Explanation:
Answer:
V = 85.619 L
Explanation:
To solve, we can use the ideal gas law equation, PV = nRT.
P = pressure (645 mmHg)
V = volume (?)
n = amount of substance (3.00 mol)
R = ideal gas constant (62.4 L mmHg/mole K)
T = temperature (295K)
Now we would plug in the appropriate numbers into the equation using the information given and solve for V.
(645)(V) = (3.00)(62.4)(295)
(V) = (3.00)(62.4)(295)/645
V = 85.619 L
The pressure of the oxygen gas collected : 718 mmHg
<h3>Further explanation</h3>
Given
P tot = 748 mmHg
P water vapour = 30 mmHg
Required
P Oxygen
Solution
Dalton's law of partial pressures states that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases
Can be formulated:
P tot = P1 + P2 + P3 ....
The partial pressure is the pressure of each gas in a mixture
P tot = P H₂O + P Oxygen
P Oxygen = 748 mmHg - 30 mmHg
P Oxygen = 718 mmHg
Use Avogadro's number which is numerically equal to ...
( 6.02 multiply by 10 to the power of negative 23)
Avocado's number is the number of particle(molecules, ions, atoms) present in one mole of substance.
number of molecule in 0.809 mole of h20 = ....
one mole of h20 contains (6.02* 10^-23)
0.809 mole contains....(6.02* 10^-23) (0.809)
which is equal to [4.951* 10 ^-23]
if I made no mistake in calculation...it must be correct
It is known as a Solution