Answer:
106.905 amu is the mass of the other isotope
Explanation:
The atomic mass of an element is the sum of the masses of the isotopes multiplied by its abundance. The atomic mass of an element X with 2 isotopes is:
X = X-109*i + X-107*i
Where X is the atomic mass = 107.868 amu
X-109 = 108.905amu, i = 48.16% = 0.4816
X-107 = ?, i = 1-0.4816 = 0.5184
Replacing:
107.868amu = 108.905amu*0.4816 + X-107*0.5184
55.4194 = X-107*0.5184
106.905 = X-107
<h3>106.905 amu is the mass of the other isotope</h3>
N₂ + 3H₂ ⇒ 2NH₃
1mol : 2mol
3,72mol : 7,44mol
n = 7,44mol
M = 17g/mol
m = n * M = 7,44mol * 17g/mol = 126,48g
On adding salt.....The boiling temperature increases.....
So ∆t= KB * molality
=O.52*(58/58)/4
= O.52*1/4
= 0.13
So increase is 100+.13=100.13°c
Answer:
Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Al + 3CuCl₂ → 3Cu + 2AlCl₃.</em>
- It is clear that 2.0 moles of Al foil reacts with 3.0 moles of CuCl₂ to produce 3.0 moles of Cu metal and 2.0 moles of AlCl₃.
- Also, we need to calculate the number of moles of the reported masses of Al foil (0.50 g) and CuCl₂ (0.75 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Al foil = mass / atomic mass = (0.50 g) / (26.98 g/mol) = 0.0185 mol.
- The no. of moles of CuCl₂ = mass / molar mass = (0.75 g) / (134.45 g/mol) = 5.578 x 10⁻³ mol.
- <em>From the stichiometry Al foil reacts with CuCl₂ with a ratio of 2:3.</em>
∴ 3.85 x 10⁻³ mol of Al foil reacts completely with 5.578 x 10⁻³ mol of CuCl₂ with <em>(2:3)</em> ratio and CuCl₂ is the limiting reactant while Al foil is in excess.
- From the stichiometry 3.0 moles of CuCl₂ will produce the same no. of moles of copper metal (3.0 moles).
- So, this reaction will produce 5.578 x 10⁻³ mol of copper metal.
- Finally, we can calculate the mass of copper produced using:
mass of Cu = no. of moles x Atomic mass of Cu = (5.578 x 10⁻³ mol)(63.546 g/mol) = 0.354459 g ≅ 0.36 g.
- <u><em>So, the answer is:</em></u>
<em>Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.</em>