<h2>since weight is measured in newtons, convert the 6 kg to newtons</h2><h3>the formula to convert is kg x 9.807 = N</h3>
hope that helps :))
Answer:
detecting and indicating an electric current
The first one is Water
The second one is Juice
The third one Vinegar
The fourth one is Milk
The last one may be Shampoo
Answer:
Explanation:
The equilibrium mechanism for the reversible acid is catalyzed by the isomerization of non conjugated β, γ- unsaturated ketones, like 3-cyclohexanone to their conjugated α, I²- unsaturated isomers.
Oxygen of the Carbonyl group in the ketone is protonated by the acid and this is followed by the abstraction of an α- hydrogen from the protonated 3-cyclo hexanone to yield ethanol
2-cyclo hexanone can be obtained by acid catalyzation of 3-cyclohexanone isomers through the formation of it's "enol".
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m