1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
3 years ago
12

Water flowing through a cylindrical pipe suddenly comes to a section of pipe where the diameter decreases to 86% of its previous

value. If the speed of the water in the larger section of the pipe was what is its speed in this smaller section if the water behaves like an ideal incompressible fluid
Physics
1 answer:
Orlov [11]3 years ago
3 0

Answer:

Explanation:

The speed of the water in the large section of the pipe is not stated

so i will assume 36m/s

(if its not the said speed, input the figure of your speed and you get it right)

Continuity equation is applicable for ideal, incompressible liquids

Q the flux of water that is  Av with A the cross section area and v the velocity,

so,

A_1V_1=A_2V_2

A_{1}=\frac{\pi}{4}d_{1}^{2} \\\\ A_{2}=\frac{\pi}{4}d_{2}^{2}

the diameter decreases 86% so

d_2 = 0.86d_1

v_{2}=\frac{\frac{\pi}{4}d_{1}^{2}v_{1}}{\frac{\pi}{4}d_{2}^{2}}\\\\=\frac{\cancel{\frac{\pi}{4}d_{1}^{2}}v_{1}}{\cancel{\frac{\pi}{4}}(0.86\cancel{d_{1}})^{2}}\\\\\approx1.35v_{1} \\\\v_{2}\approx(1.35)(38)\\\\\approx48.6\,\frac{m}{s}

Thus, speed in smaller section is 48.6 m/s

You might be interested in
What is a mechanical wave?
Anika [276]
A wave that is oscillation of matter.. such as a water ripples
7 0
3 years ago
Read 2 more answers
A velocity-time graph shows how what changes over time.
Mnenie [13.5K]

Answer:

velocity changes over time.

6 0
3 years ago
What is the definition of gravity in simple terms?
Tema [17]

Answer:

Gravity, also called gravitation, in mechanics, the universal force of attraction acting between all matter. ... On Earth all bodies have a weight, or downward force of gravity, proportional to their mass, which Earth's mass exerts on them. Gravity is measured by the acceleration that it gives to freely falling objects

1 : A force of attraction that tends to draw particles or bodies together.

2 : The attraction of bodies by the force of gravity toward the center of the earth.

3 : Great seriousness.

3 0
3 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
How does the electrostatic force compare with the strong nuclear force in the
diamong [38]

Answer:

Strong nuclear force is 1-2 order of magnitude larger than the electrostatic force

Explanation:

There are mainly two forces acting between protons and neutrons in the nucleus:

- The electrostatic force, which is the force exerted between charged particles (therefore, it is exerted between protons only, since neutrons are not charged). The magnitude of the force is given by

F_E=\frac{kq_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the  charges of the two particles, r is the separation between the particles.

The force is attractive for two opposite charges and repulsive for two same charges: therefore, the electrostatic force between two protons is repulsive.

- The strong nuclear force, which is the force exerted between nucleons. At short distance (such as in the nucleus), it is attractive, therefore neutrons and protons attract each other and this contributes in keeping the whole nucleus together.

At the scale involved in the nucleus, the strong nuclear force (attractive) is 1-2 order of magnitude larger than the electrostatic force (repulsive), therefore the nucleus stays together and does not break apart.

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the gravitational potential energy of a rock with the mass of 67 kg if it is sitting on top of a hill .35 kilometers hig
    15·1 answer
  • (a) Find the size of the smallest detail observable in human tissue with 20.0-MHz ultrasound. (b) Is its effective penetration d
    15·1 answer
  • Which of these materials is an example of an insulator?
    7·1 answer
  • A climber pulls herself 8 meters upwards with a force of 150 Newtons. If it takes her 16 seconds to cover the 8 meters, how much
    9·1 answer
  • B. A car moving at an initial speed vi applies its brakes and skids for some distance until coming to a complete stop. If the co
    9·1 answer
  • The transfer of thermal energy between two bodies which are at different temperatures. The si unit for this is the joule. Genera
    12·2 answers
  • The answer please it’s very simple this is 7th grade science
    13·2 answers
  • Force acts on a pebble with position vector , relative to the origin. What is the resulting torque acting on the pebble about (a
    9·1 answer
  • If the period of oscillation of a simple pendulum is 4s, find its length. If the velocity of the bob
    14·1 answer
  • Sally and Suzy are moving into their first college dorm together. They are loading all their furniture onto a truck with a ramp
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!